Skip to main content

Questions tagged [polylogarithm]

For questions about or related to polylogarithm functions.

1 vote
1 answer
111 views

$\operatorname{Li}_{2} \left(\frac{1}{e^{\pi}} \right)$ as a limit of a sum

Working on the same lines as This/This and This I got the following expression for the Dilogarithm $\operatorname{Li}_{2} \left(\frac{1}{e^{\pi}} \right)$: $$\operatorname{Li}_{2} \left(\frac{1}{e^{\...
Srini's user avatar
  • 906
0 votes
0 answers
78 views

$\operatorname{Li}_{2} \left(\frac12 \right)$ vs $\operatorname{Li}_{2} \left(-\frac12 \right)$ : some long summation expressions

Throughout this post, $\operatorname{Li}_{2}(x)$ refers to Dilogarithm. While playing with some Fourier Transforms, I came up with the following expressions: $$2 \operatorname{Li}_{2}\left(\frac12 \...
Srini's user avatar
  • 906
4 votes
0 answers
123 views

Definite integral involving exponential and logarith function

Working with Dilogarimth function, we get the following definite integral $$\int_0^{\infty}\frac{t^2\,\ln^{n}(t)}{(1-e^{x\,t})(1-e^{y\,t})}\,dt$$ with $n=1,2,3,...$ and $x,y>0$. I wonder if is ...
popi's user avatar
  • 1,774
0 votes
0 answers
33 views

Asymptotic expansions of sums via Cauchy's integral formula and Watson's lemma

I am looking for references that deal with the asymptotic expansions of sums of the form $$s(n)=\sum_{k=0}^n g(n,k)$$ using the (or similar to) following method. We have the generating function $$f(z)=...
bob's user avatar
  • 2,207
3 votes
1 answer
55 views

Euler Sums of Weight 6

For the past couple of days I have been looking at Euler Sums, and I happened upon this particular one: $$ \sum_{n=1}^{\infty}\left(-1\right)^{n}\, \frac{H_{n}}{n^{5}} $$ I think most people realize ...
Jessie Christian's user avatar
2 votes
0 answers
40 views

How is the dilogarithm defined?

I am pretty happy with the definition of the "maximal analytic contiuation of the logarithm" as $$ \operatorname{Log}_{\gamma}\left(z\right) = \int_\gamma ...
Jack's user avatar
  • 376
4 votes
1 answer
222 views

Closed form for $\sum\limits_{M=2}^{\infty}\sum\limits_{n=M}^{\infty} \frac{2^{-M}3^{M-n-1}\pi \csc(n \pi) \Gamma(M)}{(n+1)^2 \Gamma(M-n)\Gamma(n+1)}$

I encountered this expression generated by mathematica as a sub-step in a problem I am solving. $$\sum\limits_{M=2}^{\infty}\sum\limits_{n=M}^{\infty} \frac{2^{-M}3^{M-n-1}\pi \csc(n \pi) \Gamma(M)}{(...
Srini's user avatar
  • 906
0 votes
1 answer
53 views

$Im[\log(\frac{3}{2})Li_{2}(\frac{3}{2})-Li_{3}(\frac{3}{2})+2Li_{3}(3)]=-\frac{\pi}{2}\log^{2}(2)-\frac{3\pi}{2}\log^{2}(3)+\pi\log(2)\log(3)$

When working on another problem, I got the following expression \begin{align} & \Im\left[\log\left(\frac32\right) \operatorname{Li} _{2} \left(\frac32\right) - \operatorname{Li} _{3}\left(\frac32\...
Srini's user avatar
  • 906
3 votes
1 answer
115 views

Is there a closed form solution for the sum $\sum\limits_{M=2}^{\infty} \sum\limits_{n=M}^{\infty} \frac{2^{-M}3^{M-n-1}}{(M-n-1)(n+1)^{2}}$?

While working on another problem, this came up as a sub-step: $$ \sum_{M\ =\ 2}^{\infty}\,\,\,\sum_{n\ =\ M}^{\infty}\ {2^{-M}\ 3^{M - n - 1} \over \left(M - n - 1\right)\left(n + 1\right)^{\,2}} $$ ...
Srini's user avatar
  • 906
1 vote
0 answers
64 views

How to integrate $\int_0^\frac{1}{2}\frac{\ln(1+x)}{x}\ln\left(\frac{1}{x}-1\right)\mathrm{d}x$ [duplicate]

Question; how to integrate $$\int_0^\frac{1}{2}\frac{\ln(1+x)}{x}\ln\left(\frac{1}{x}-1\right)\mathrm{d}x$$ here is my attempt to solve the integral \begin{align} I&=\int_0^\frac{1}{2}\frac{\ln(1+...
Mods And Staff Are Not Fair's user avatar
9 votes
0 answers
253 views

Evaluate $\int_{0}^{1} \operatorname{Li}_3\left [ \left ( \frac{x(1-x)}{1+x} \right ) ^2 \right ] \text{d}x$

Possibly evaluate the integral? $$ \int_{0}^{1} \operatorname{Li}_3\left [ \left ( \frac{x(1-x)}{1+x} \right ) ^2 \right ] \text{d}x. $$ I came across this when playing with Legendre polynomials, ...
Setness Ramesory's user avatar
1 vote
0 answers
79 views

Simplify the Laplace Transform for $E_{i}(-y)^{2}$

I want to simplify the Laplace transform expression of $E_{i}(-y)^{2}$, where $E_{i}(y)$ is the exponential integral defined by $E_{i}(y) = -\int\limits_{-y}^{\infty} \frac{e^{-t}}{t} dt$. Question: ...
Srini's user avatar
  • 906
1 vote
0 answers
50 views

Polylogarithmically solving $\int\frac{\log(a_1x+b_1)\cdots\log(a_nx+b_n)}{px+q}\,dx$

I am now trying a direct approach to solving my question about $$\int_0^\infty\frac{\arctan a_1x\arctan a_2x\dots\arctan a_nx}{1+x^2}\,dx$$ where the $a_i$ are all positive. Note that the $\arctan$s ...
Parcly Taxel's user avatar
8 votes
1 answer
285 views

Evaluate $\int_0^\infty\frac{dx}{1+x^2}\prod_i\arctan a_ix$ (product of arctangents and Lorentzian)

Define $$I(a_1,\dots,a_n)=\int_0^\infty\frac{dx}{1+x^2}\prod_{i=1}^n\arctan a_ix$$ with $a_i>0$. By this answer $\newcommand{Li}{\operatorname{Li}_2}$ $$I(a,b)= \frac\pi4\left(\frac{\pi^2}6 -\Li\...
Parcly Taxel's user avatar
12 votes
2 answers
496 views

How to determine the value of $\displaystyle f(x) = \sum_{n=1}^\infty\frac{\sqrt n}{n!}x^n$?

How to determine the value of $\displaystyle f(x) = \sum_{n=1}^\infty\frac{\sqrt n}{n!}x^n$? No context, this is just a curiosity o'mine. Yes, I am aware there is no reason to believe a random power ...
Alma Arjuna's user avatar
  • 3,871

15 30 50 per page
1
2 3 4 5
37