Skip to main content

All Questions

11 votes
0 answers
252 views

Solve the integral $\int_0^1 \frac{\ln^2(x+1)-\ln\left(\frac{2x}{x^2+1}\right)\ln x+\ln^2\left(\frac{x}{x+1}\right)}{x^2+1} dx$

I tried to solve this integral and got it, I showed firstly $$\int_0^1 \frac{\ln^2(x+1)+\ln^2\left(\frac{x}{x+1}\right)}{x^2+1} dx=2\Im\left[\text{Li}_3(1+i) \right] $$ and for other integral $$\int_0^...
Faoler's user avatar
  • 1,577
6 votes
1 answer
282 views

Calculate $\int _0^1\frac{\arcsin ^2\left(x\right)\ln \left(x\right)\ln \left(1-x\right)}{x}\:\mathrm{d}x$

this integral got posted on a mathematics group by a friend $$I=\int _0^1\frac{\arcsin ^2\left(x\right)\ln \left(x\right)\ln \left(1-x\right)}{x}\:\mathrm{d}x$$ I tried seeing what I'd get from ...
logandetner's user avatar
1 vote
0 answers
94 views

Series with power of generalized harmonic number $\displaystyle\sum_{k=1}^{\infty}\left(H_k^{(s)}\right)^n x^k$

It's possible to generalize these series? $$\sum_{k=1}^{\infty}H_k^{(s)}x^k=\frac{\operatorname{Li}_s(x)}{1-x}$$ $$\sum_{k=1}^{\infty}H_k^2 x^k=\frac{\ln(1-x)^2+\operatorname{Li}_2(x)}{1-x}$$ Where: $$...
Math Attack's user avatar
11 votes
0 answers
436 views

Is the closed form of $\int_0^1\frac{\text{Li}_{2a+1}(x)}{1+x^2}dx$ known in the literature?

Using $$\text{Li}_{2a+1}(x)-\text{Li}_{2a+1}(1/x)=\frac{i\,\pi\ln^{2a}(x)}{(2a)!}+2\sum_{k=0}^a \frac{\zeta(2a-2k)}{(2k+1)!}\ln^{2k+1}(x)\tag{1}$$ and $$\int_0^1x^{n-1}\operatorname{Li}_a(x)\mathrm{d}...
Ali Shadhar's user avatar
  • 25.8k
35 votes
0 answers
2k views

Are these generalizations known in the literature?

By using $$\int_0^\infty\frac{\ln^{2n}(x)}{1+x^2}dx=|E_{2n}|\left(\frac{\pi}{2}\right)^{2n+1}\tag{a}$$ and $$\text{Li}_{a}(-z)+(-1)^a\text{Li}_{a}(-1/z)=-2\sum_{k=0}^{\lfloor{a/2}\rfloor }\frac{\eta(...
Ali Shadhar's user avatar
  • 25.8k
9 votes
1 answer
329 views

Different ways to evaluate $\sum_{n=1}^\infty\frac{H_nH_n^{(2)}}{(n+1)(n+2)(n+3)}$

The following question: How to compute the harmonic series $$\sum_{n=1}^\infty\frac{H_nH_n^{(2)}}{(n+1)(n+2)(n+3)}$$ where $H_n=\sum_{k=1}^n\frac{1}{k}$ and $H_n^{(2)}=\sum_{k=1}^n\frac{1}{k^2}$, was ...
Ali Shadhar's user avatar
  • 25.8k
8 votes
1 answer
342 views

Evaluating $\int_0^1\frac{\operatorname{Li}_2(x)\ln(1+x)}x\,dx$

Well, I've been trying to solve the following integral: \begin{equation*} \int_0^1\frac{\text{Li}_3(x)}{1+x}\mathrm dx, \end{equation*} where by integration by parts, making $u=\text{Li}_3(x)$ and $\...
lpb's user avatar
  • 481
5 votes
2 answers
368 views

Closed form of the sum $s_4 = \sum_{n=1}^{\infty}(-1)^n \frac{H_{n}}{(2n+1)^4}$

I am interested to know if the following sum has a closed form $$s_4 = \sum_{n=1}^{\infty}(-1)^n \frac{H_{n}}{(2n+1)^4}\tag{1}$$ I stumbled on this question while studying a very useful book about ...
Dr. Wolfgang Hintze's user avatar
7 votes
3 answers
280 views

Compute the double sum $\sum_{n, m>0, n \neq m} \frac{1}{n\left(m^{2}-n^{2}\right)}=\frac{3}{4} \zeta(3)$

I am trying to compute the following double sum $$\boxed{\sum_{n, m>0, n \neq m} \frac{1}{n\left(m^{2}-n^{2}\right)}=\frac{3}{4} \zeta(3)}$$ I proceeded as following $$\sum_{n=1}^{\infty}\sum_{m=1}^...
Ricardo770's user avatar
  • 2,811
3 votes
4 answers
475 views

How to compute $\sum_{n=1}^\infty \frac{(-1)^n}{n^2}H_{2n}$

Edit In this post I computed the following integral $$\int_{0}^{1}\frac{\log(1-x)\log(1-x^2)}{x}dx=\frac{11}{8}\zeta(3)$$ Now I am trying to compute $$\boxed{\int_{0}^{1}\frac{\log(1-x)\log(1-x^4)}{x}...
Ricardo770's user avatar
  • 2,811
1 vote
1 answer
70 views

Evaluating $\sum_{k=1}^{a}\frac{-1-H_k}{k(1-e)^k}$

Question : My attempt: Let $a=17399172$ $$\begin{align} &\sum_{k=1}^{a}\frac{-1-H_k}{\log_2\left(\sum_{j=0}^{k}\left(\ln\left(e^{C_j^k}\right)\right)\right)(1-e)^k} \\ &= \sum_{k=1}^{a}\frac{-...
user516076's user avatar
  • 2,200
6 votes
0 answers
305 views

Does there exist a closed form for $\int_0^{\pi/2}\frac{x^2\ \text{Li}_2(\sin^2x)}{\sin x}dx$?

I am not sure if there exists a closed form for $$I=\int_0^{\pi/2}\frac{x^2\ \text{Li}_2(\sin^2x)}{\sin x}dx$$ which seems non-trivial. I used the reflection and landen's identity, didn't help much. ...
Ali Shadhar's user avatar
  • 25.8k
4 votes
2 answers
335 views

How to approach $\sum_{n=0}^\infty(-1)^n\frac{H_{2n+1}}{(2n+1)^3}$ elegantly?

How to show that $$\sum_{n=0}^\infty(-1)^n\frac{H_{2n+1}}{(2n+1)^3}=\frac{\psi^{(3)}\left(\frac14\right)}{384}-\frac{\pi^4}{48}-\frac{35\pi}{128}\zeta(3)$$ without using the generating function: \...
Ali Shadhar's user avatar
  • 25.8k
6 votes
1 answer
765 views

How to find $\sum_{n=1}^\infty\frac{(-1)^nH_{2n}}{n^3}$ and $\sum_{n=1}^\infty\frac{(-1)^nH_{2n}^{(2)}}{n^2}$ using real methods?

How to calculate $$\sum_{n=1}^\infty\frac{(-1)^nH_{2n}}{n^3}$$ and $$\sum_{n=1}^\infty\frac{(-1)^nH_{2n}^{(2)}}{n^2}$$ by means of real methods? This question was suggested by Cornel the author of the ...
Ali Shadhar's user avatar
  • 25.8k
17 votes
2 answers
1k views

How to approach $\sum _{n=1}^{\infty } \frac{16^n}{n^4 \binom{2 n}{n}^2}$?

@User mentioned in the comments that $$\sum _{n=1}^{\infty } \frac{16^n}{n^3 \binom{2 n}{n}^2}=8\pi\text{G}-14 \zeta (3)\tag1$$ $$\small{\sum _{n=1}^{\infty } \frac{16^n}{n^4 \binom{2 n}{n}^2}=64 \pi ...
Ali Shadhar's user avatar
  • 25.8k

15 30 50 per page
1
2 3 4 5
7