Skip to main content

Questions tagged [polylogarithm]

For questions about or related to polylogarithm functions.

9 votes
5 answers
2k views

A group of important generating functions involving harmonic number.

How to prove the following identities: $$\small{\sum_{n=1}^\infty\frac{H_{n}}{n^2}x^{n}=\operatorname{Li}_3(x)-\operatorname{Li}_3(1-x)+\ln(1-x)\operatorname{Li}_2(1-x)+\frac12\ln x\ln^2(1-x)+\zeta(3)...
Ali Shadhar's user avatar
  • 25.8k
42 votes
7 answers
7k views

Closed Form for the Imaginary Part of $\text{Li}_3\Big(\frac{1+i}2\Big)$

$\qquad\qquad$ Is there any closed form expression for the imaginary part of $~\text{Li}_3\bigg(\dfrac{1+i}2\bigg)$ ? Motivation: We already know that $~\Re\bigg[\text{Li}_3\bigg(\dfrac{1+i}2\bigg)\...
Lucian's user avatar
  • 48.5k
44 votes
2 answers
3k views

Remarkable logarithmic integral $\int_0^1 \frac{\log^2 (1-x) \log^2 x \log^3(1+x)}{x}dx$

We have the following result ($\text{Li}_{n}$ being the polylogarithm): $$\tag{*}\small{ \int_0^1 \log^2 (1-x) \log^2 x \log^3(1+x) \frac{dx}{x} = -168 \text{Li}_5(\frac{1}{2}) \zeta (3)+96 \text{Li}...
pisco's user avatar
  • 19.1k
4 votes
3 answers
1k views

Proof of dilogarithm reflection formula $\zeta(2)-\log(x)\log(1-x)=\operatorname{Li}_2(x)+\operatorname{Li}_2(1-x)$

How to prove $$\zeta(2)-\log(x)\log(1-x)=\operatorname{Li}_2(x)+\operatorname{Li}_2(1-x)$$ I havent started, any hints?
Amad27's user avatar
  • 11.1k
14 votes
2 answers
2k views

Definite Dilogarithm integral $\int^1_0 \frac{\operatorname{Li}_2^2(x)}{x}\, dx $

Prove the following $$\int^1_0 \frac{\operatorname{Li}_2^2(x)}{x}\, dx = -3\zeta(5)+\pi^2 \frac{\zeta(3)}{3}$$ where $$\operatorname{Li}^2_2(x) =\left(\int^x_0 \frac{\log(1-t)}{t}\,dt \right)^2$$
Zaid Alyafeai's user avatar
49 votes
9 answers
3k views

Closed-form of $\int_0^1 \frac{\operatorname{Li}_2\left( x \right)}{\sqrt{1-x^2}} \,dx $

I'm looking for a closed form of this integral. $$I = \int_0^1 \frac{\operatorname{Li}_2\left( x \right)}{\sqrt{1-x^2}} \,dx ,$$ where $\operatorname{Li}_2$ is the dilogarithm function. A numerical ...
user153012's user avatar
  • 12.4k
31 votes
3 answers
2k views

What is a closed form for ${\large\int}_0^1\frac{\ln^3(1+x)\,\ln^2x}xdx$?

Some time ago I asked How to find $\displaystyle{\int}_0^1\frac{\ln^3(1+x)\ln x}x\mathrm dx$. Thanks to great effort of several MSE users, we now know that \begin{align} \int_0^1\frac{\ln^3(1+x)\,\ln ...
Oksana Gimmel's user avatar
11 votes
2 answers
603 views

Compute $\int_0^{\pi/2} x^2\left(\sum_{n=1}^\infty (-1)^{n-1} \cos^n(x)\cos(nx)\right)dx$

How to prove $$I=\int_0^{\pi/2} x^2\left(\sum_{n=1}^\infty (-1)^{n-1} \cos^n(x)\cos(nx)\right)dx=\frac16\left(\frac{\pi^3}{12}-\pi\operatorname{Li}_2\left(\frac13\right)\right)$$ This problem is ...
Ali Shadhar's user avatar
  • 25.8k
6 votes
3 answers
3k views

Short calculation of the dilogarithm?

Is there a nice way to implement the dilogarithm function for real values, without actually performing the integration? A series solution would have been nice, but the series around $0$ has a ...
Nathaniel Bubis's user avatar
43 votes
7 answers
2k views

Triple Euler sum result $\sum_{k\geq 1}\frac{H_k^{(2)}H_k }{k^2}=\zeta(2)\zeta(3)+\zeta(5)$

In the following thread I arrived at the following result $$\sum_{k\geq 1}\frac{H_k^{(2)}H_k }{k^2}=\zeta(2)\zeta(3)+\zeta(5)$$ Defining $$H_k^{(p)}=\sum_{n=1}^k \frac{1}{n^p},\,\,\, H_k^{(1)}\...
Zaid Alyafeai's user avatar
17 votes
3 answers
824 views

A conjectured value for $\operatorname{Re} \operatorname{Li}_4 (1 + i)$

In evaluating the integral given here it would seem that: $$\operatorname{Re} \operatorname{Li}_4 (1 + i) \stackrel{?}{=} -\frac{5}{16} \operatorname{Li}_4 \left (\frac{1}{2} \right ) + \frac{97}{...
omegadot's user avatar
  • 11.8k
12 votes
2 answers
448 views

Closed forms of Nielsen polylogarithms $\int_0^1\frac{(\ln t)^{n-1}(\ln(1-z\,t))^p}{t}dt$?

(This summarizes my posts on Nielsen polylogs.) I. Question 1: How to complete the table below? Consider the special cases $z=-1$ and $z=\frac12$. Given the Nielsen generalized polylogarithm, $$S_{n,...
Tito Piezas III's user avatar
20 votes
3 answers
905 views

Conjecture $\Re\,\operatorname{Li}_2\left(\frac12+\frac i6\right)=\frac{7\pi^2}{48}-\frac13\arctan^22-\frac16\arctan^23-\frac18\ln^2(\tfrac{18}5)$

I numerically discovered the following conjecture: $$\Re\,\operatorname{Li}_2\left(\frac12+\frac i6\right)\stackrel{\color{gray}?}=\frac{7\pi^2}{48}-\frac{\arctan^22}3-\frac{\arctan^23}6-\frac18\ln^2\!...
Vladimir Reshetnikov's user avatar
17 votes
8 answers
1k views

About the integral $\int_{0}^{1}\frac{\log(x)\log^2(1+x)}{x}\,dx$

I came across the following Integral and have been completely stumped by it. $$\large\int_{0}^{1}\dfrac{\log(x)\log^2(1+x)}{x}dx$$ I'm extremely sorry, but the only thing I noticed was that the ...
Make a Difference's user avatar
14 votes
4 answers
2k views

Compute $\int_0^{1/2}\frac{\left(\operatorname{Li}_2(x)\right)^2}{x}dx$ or $\sum_{n=1}^\infty \frac{H_n^{(2)}}{n^32^n}$

Prove that I encountered this integral while working on the sum $\displaystyle \sum_{n=1}^\infty \frac{H_n^{(2)}}{n^32^n}$. Both of the integral and the sum were proposed by Cornel Valean: The ...
Ali Shadhar's user avatar
  • 25.8k

15 30 50 per page
1
2 3 4 5
14