4
$\begingroup$

I encountered this expression generated by mathematica as a sub-step in a problem I am solving. $$\sum\limits_{M=2}^{\infty}\sum\limits_{n=M}^{\infty} \frac{2^{-M}3^{M-n-1}\pi \csc(n \pi) \Gamma(M)}{(n+1)^2 \Gamma(M-n)\Gamma(n+1)}$$

Question: Is there a closed form for this expression in terms of $\log$, $Li_{2}()$, $Li_{3}()$ and similar?

What have I done so far? Not that it is useful, I got it simplified to the following:

$$\sum\limits_{M=2}^{\infty}\sum\limits_{a=0}^{\infty} \frac{(-1)^{M+1} a! (M-1)!}{2^{M} 3^{a+1} (M+a+1)^2 (M+a)!}$$ or $$\sum\limits_{M=2}^{\infty}\sum\limits_{a=0}^{\infty} \frac{(-1)^{M+1} }{M 2^{M} \binom{M+a}{a} 3^{a+1} (M+a+1)^2}$$. I don't know how to proceed. A related question I posted earlier is here.

Edit1: I did one more simplification (if this helps anyone to complete the steps needed):

As per this $$\frac{1}{\binom{M+a}{a}} = (M+a+1) \int\limits_{0}^{1} t^{a} (1-t)^{M} dt$$

Therefore the expression becomes

$$\sum\limits_{M=2}^{\infty}\sum\limits_{a=0}^{\infty} \frac{(-1)^{M+1} }{M 2^{M} 3^{a+1} (M+a+1)^2} (M+a+1) \int\limits_{0}^{1} t^{a} (1-t)^{M} dt $$

$$= \sum\limits_{M=2}^{\infty}\sum\limits_{a=0}^{\infty} \frac{(-1)^{M+1} }{M (M+a+1) 2^{M} 3^{a+1}} \int\limits_{0}^{1} t^{a} (1-t)^{M} dt$$

Taking the partial fractions of $\frac{1}{M(M+a+1)} = \frac{1}{a+1}\left(\frac{1}{M}-\frac{1}{M+a+1}\right)$,

$$= \sum\limits_{M=2}^{\infty}\sum\limits_{a=0}^{\infty} \frac{(-1)^{M+1} }{M (a+1) 2^{M} 3^{a+1}} \int\limits_{0}^{1} t^{a} (1-t)^{M} dt$$ $$- \sum\limits_{M=2}^{\infty}\sum\limits_{a=0}^{\infty} \frac{(-1)^{M+1} }{(M+a+1) (a+1) 2^{M} 3^{a+1}} \int\limits_{0}^{1} t^{a} (1-t)^{M} dt$$

$$= \int\limits_{0}^{1} \sum\limits_{M=2}^{\infty}\frac{(-1)^{M+1} (1-t)^{M}}{M 2^{M} } \sum\limits_{a=0}^{\infty} \frac{1 }{ (a+1) 3^{a+1}} t^{a} dt$$ $$- \sum\limits_{M=2}^{\infty}\sum\limits_{a=0}^{\infty} \frac{(-1)^{M+1} }{(M+a+1) (a+1) 2^{M} 3^{a+1}} \int\limits_{0}^{1} t^{a} (1-t)^{M} dt$$

$$= K - \sum\limits_{M=2}^{\infty}\sum\limits_{a=0}^{\infty} \frac{(-1)^{M+1} }{(M+a+1) (a+1) 2^{M} 3^{a+1}} \int\limits_{0}^{1} t^{a} (1-t)^{M} dt$$

Where K can be calculated by Mathematica in terms of polylog (which is all I am asking for this question/bounty)

I don't know how to simplify the second integral yet. Integral gurus, please help.

$\endgroup$
5
  • $\begingroup$ So in $\Gamma(M-n)$ we have $M-n \le 0$, so $\Gamma(M-n)$ is undefined ? And in $\cos(n\pi)$ the csc is undefined? Or perhaps you somehow depend on these two canceling each other? $\endgroup$
    – GEdgar
    Commented May 26 at 19:28
  • $\begingroup$ Yes, in my simplification, I took the limit of these things canceling out $\endgroup$
    – Srini
    Commented May 26 at 21:52
  • 1
    $\begingroup$ The second summation is incorrect. The summands should be of the form $\frac{{(-1)}^{M+1}}{M2^M\color{blue}{M+a\choose a}\color{black}3^{a+1}{(M+a+1)}^2}$. $\endgroup$ Commented May 30 at 4:08
  • $\begingroup$ Thanks Arjun, you are right, I fixed the error $\endgroup$
    – Srini
    Commented May 30 at 5:00
  • 1
    $\begingroup$ Perhaps, you might want to try partial fraction decomposition on the inverse binomial coefficient, as it is well known (see the wikipedia of the binomial coefficient). $\endgroup$
    – Nolord
    Commented May 30 at 5:24

1 Answer 1

4
+250
$\begingroup$

Let $\mathcal{S}$ denote the sum of the double infinite series

$$\mathcal{S}:=\sum_{m=2}^{\infty}\sum_{n=m}^{\infty}\frac{2^{-m}3^{m-n-1}\pi\csc{\left(n\pi\right)}\,\Gamma{\left(m\right)}}{\left(n+1\right)^{2}\,\Gamma{\left(m-n\right)}\,\Gamma{\left(n+1\right)}}\approx-0.0042081,$$

where the following limiting value is used to handle the undefined terms

$$\frac{\pi\csc{\left(n\pi\right)}}{\Gamma{\left(m-n\right)}}=(-1)^{m-1}(n-m)!;~~~\small{m\in\mathbb{Z}\land n\in\mathbb{Z}\land1\le m\le n}.$$


We begin by converting $\mathcal{S}$ into a double integral. Making use of the integral representation for the beta function and using the technique of summation under the integral sign, we find

$$\begin{align} \mathcal{S} &=\sum_{m=2}^{\infty}\sum_{n=m}^{\infty}\frac{2^{-m}3^{m-n-1}\pi\csc{\left(n\pi\right)}\,\Gamma{\left(m\right)}}{\left(n+1\right)^{2}\,\Gamma{\left(m-n\right)}\,\Gamma{\left(n+1\right)}}\\ &=\sum_{m=2}^{\infty}\sum_{n=m}^{\infty}\frac{2^{-m}3^{m-n-1}(-1)^{m-1}(n-m)!\,\Gamma{\left(m\right)}}{\left(n+1\right)^{2}\,\Gamma{\left(n+1\right)}}\\ &=\sum_{m=2}^{\infty}\sum_{n=m}^{\infty}\frac{(-1)^{m-1}2^{-m}3^{m-n-1}\,\Gamma{\left(n-m+1\right)}\,\Gamma{\left(m\right)}}{\left(n+1\right)^{2}\,\Gamma{\left(n+1\right)}}\\ &=\sum_{m=2}^{\infty}\sum_{n=m}^{\infty}\frac{(-1)^{m-1}\left(\frac12\right)^{m}\left(\frac13\right)^{n-m+1}\operatorname{B}{\left(n-m+1,m\right)}}{\left(n+1\right)^{2}}\\ &=\sum_{m=2}^{\infty}\sum_{n=0}^{\infty}\frac{(-1)^{m-1}\left(\frac12\right)^{m}\left(\frac13\right)^{n+1}\operatorname{B}{\left(n+1,m\right)}}{\left(n+m+1\right)^{2}}\\ &=\sum_{m=2}^{\infty}\sum_{n=1}^{\infty}\frac{(-1)^{m-1}\left(\frac12\right)^{m}\left(\frac13\right)^{n}\operatorname{B}{\left(n,m\right)}}{\left(n+m\right)^{2}}\\ &=\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}\frac{(-1)^{m}\left(\frac12\right)^{m+1}\left(\frac13\right)^{n}\operatorname{B}{\left(n,m+1\right)}}{\left(n+m+1\right)^{2}}\\ &=\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}\frac{(-1)^{m}\left(\frac12\right)^{m+1}\left(\frac13\right)^{n}}{\left(n+m+1\right)\,n}\,\operatorname{B}{\left(n+1,m+1\right)}\\ &=\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}\frac{(-1)^{m}a^{m+1}b^{n}}{\left(n+m+1\right)\,n}\,\operatorname{B}{\left(n+1,m+1\right)};~~~\small{\left[a:=\frac12\land b:=\frac13\right]}\\ &=\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}\frac{(-1)^{m}a^{m+1}b^{n}}{\left(n+m+1\right)\,n}\int_{0}^{1}\mathrm{d}t\,t^{n}(1-t)^{m}\\ &=\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}\frac{(-1)^{m}a^{m+1}b^{n}}{n}\int_{0}^{1}\mathrm{d}t\,t^{n}(1-t)^{m}\int_{0}^{1}\mathrm{d}x\,x^{m+n}\\ &=\int_{0}^{1}\mathrm{d}t\int_{0}^{1}\mathrm{d}x\,\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}\frac{(-1)^{m}a^{m+1}b^{n}t^{n}(1-t)^{m}x^{m}x^{n}}{n}\\ &=\int_{0}^{1}\mathrm{d}t\int_{0}^{1}\mathrm{d}x\,\sum_{m=1}^{\infty}(-1)^{m}a^{m+1}(1-t)^{m}x^{m}\sum_{n=1}^{\infty}\frac{(btx)^{n}}{n}\\ &=\int_{0}^{1}\mathrm{d}t\int_{0}^{1}\mathrm{d}x\,\sum_{m=1}^{\infty}(-1)^{m}a^{m+1}(1-t)^{m}x^{m}\left[-\ln{\left(1-btx\right)}\right]\\ &=-a\int_{0}^{1}\mathrm{d}t\int_{0}^{1}\mathrm{d}x\,\ln{\left(1-btx\right)}\sum_{m=1}^{\infty}[(-1)a(1-t)x]^{m}\\ &=-a\int_{0}^{1}\mathrm{d}t\int_{0}^{1}\mathrm{d}x\,\frac{[(-1)a(1-t)x]}{1-[(-1)a(1-t)x]}\ln{\left(1-btx\right)}\\ &=a\int_{0}^{1}\mathrm{d}t\int_{0}^{1}\mathrm{d}x\,\frac{a(1-t)x}{1+a(1-t)x}\ln{\left(1-btx\right)}.\\ \end{align}$$

Note that $\frac{a}{1+a}=b\iff a=\frac{b}{1-b}$.

We can further reduce the double integral representation of $\mathcal{S}$ to a single-variable integral as follows:

$$\begin{align} \mathcal{S} &=a\int_{0}^{1}\mathrm{d}t\int_{0}^{1}\mathrm{d}x\,\frac{a(1-t)x}{1+a(1-t)x}\ln{\left(1-btx\right)}\\ &=a\int_{0}^{1}\mathrm{d}t\int_{0}^{t}\mathrm{d}y\,\frac{a(1-t)y}{t[t+a(1-t)y]}\ln{\left(1-by\right)};~~~\small{\left[tx=y\right]}\\ &=a\int_{0}^{1}\mathrm{d}y\int_{y}^{1}\mathrm{d}t\,\frac{a(1-t)y}{t[t+a(1-t)y]}\ln{\left(1-by\right)}\\ &=a\int_{0}^{1}\mathrm{d}y\,\ln{\left(1-by\right)}\int_{y}^{1}\mathrm{d}t\,\frac{a(1-t)y}{t[t+a(1-t)y]}\\ &=a\int_{0}^{1}\mathrm{d}y\,\ln{\left(1-by\right)}\int_{0}^{1-y}\mathrm{d}u\,\frac{ayu}{(1-u)(1-u+ayu)};~~~\small{\left[1-t=u\right]}\\ &=a\int_{0}^{1}\mathrm{d}y\,\ln{\left(1-by\right)}\int_{0}^{1-y}\mathrm{d}u\,\left[\frac{1}{1-u}-\frac{1}{1-u+ayu}\right]\\ &=a\int_{0}^{1}\mathrm{d}y\,\ln{\left(1-by\right)}\left[\int_{0}^{1-y}\mathrm{d}u\,\frac{1}{1-u}-\int_{0}^{1-y}\mathrm{d}u\,\frac{1}{1-u+ayu}\right]\\ &=a\int_{0}^{1}\mathrm{d}y\,\ln{\left(1-by\right)}\left[-\int_{1}^{y}\mathrm{d}t\,\frac{1}{t}-\frac{1}{\left(1-ay\right)}\int_{0}^{(1-y)(1-ay)}\mathrm{d}v\,\frac{1}{1-v}\right];~~~\small{\left[u=\frac{v}{1-ay}\right]}\\ &=a\int_{0}^{1}\mathrm{d}y\,\ln{\left(1-by\right)}\left[-\ln{\left(y\right)}+\frac{1}{1-ay}\int_{1}^{(1+a-ay)y}\mathrm{d}t\,\frac{1}{t}\right]\\ &=a\int_{0}^{1}\mathrm{d}y\,\ln{\left(1-by\right)}\left[-\ln{\left(y\right)}+\frac{\ln{\left((1+a-ay)y\right)}}{1-ay}\right].\\ \end{align}$$

Then,

$$\begin{align} \mathcal{S} &=a\int_{0}^{1}\mathrm{d}y\,\ln{\left(1-by\right)}\left[-\ln{\left(y\right)}+\frac{\ln{\left((1+a-ay)y\right)}}{1-ay}\right]\\ &=-a\int_{0}^{1}\mathrm{d}y\,\ln{\left(y\right)}\ln{\left(1-by\right)}\\ &~~~~~+\int_{0}^{1}\mathrm{d}y\,\frac{a\ln{\left(1+a-ay\right)}\ln{\left(1-by\right)}}{1-ay}+\int_{0}^{1}\mathrm{d}y\,\frac{a\ln{\left(y\right)}\ln{\left(1-by\right)}}{1-ay}\\ &=a\int_{0}^{1}\mathrm{d}y\,y\frac{d}{dy}\left[\ln{\left(y\right)}\ln{\left(1-by\right)}\right];~~~\small{I.B.P.}\\ &~~~~~+\int_{0}^{1}\mathrm{d}y\,\frac{a\ln{\left(1+a\right)}\ln{\left(1-by\right)}}{1-ay}+\int_{0}^{1}\mathrm{d}y\,\frac{a\ln{\left(1-\frac{a}{1+a}y\right)}\ln{\left(1-by\right)}}{1-ay}\\ &~~~~~+\int_{0}^{1}\mathrm{d}y\,\frac{a\ln{\left(y\right)}\ln{\left(1-by\right)}}{1-ay}\\ &=a\int_{0}^{1}\mathrm{d}y\,y\left[\frac{\ln{\left(1-by\right)}}{y}-\frac{b\ln{\left(y\right)}}{1-by}\right]\\ &~~~~~+\ln{\left(1+a\right)}\int_{0}^{1}\mathrm{d}y\,\frac{a\ln{\left(1-by\right)}}{1-ay}+\int_{0}^{1}\mathrm{d}y\,\frac{a\ln^{2}{\left(1-by\right)}}{1-ay}\\ &~~~~~+\int_{0}^{1}\mathrm{d}y\,\frac{a\ln{\left(y\right)}\ln{\left(1-by\right)}}{1-ay}\\ &=a\int_{0}^{1}\mathrm{d}y\,\left[\ln{\left(1-by\right)}-\frac{by\ln{\left(y\right)}}{1-by}\right]\\ &~~~~~+\ln{\left(1+a\right)}\int_{0}^{1}\mathrm{d}y\,\frac{a\ln{\left(1-by\right)}}{1-ay}+\int_{0}^{1}\mathrm{d}y\,\frac{a\ln^{2}{\left(1-by\right)}}{1-ay}\\ &~~~~~+\int_{0}^{1}\mathrm{d}y\,\frac{a\ln^{2}{\left(y\right)}+a\ln^{2}{\left(1-by\right)}-a\ln^{2}{\left(\frac{y}{1-by}\right)}}{2\left(1-ay\right)}\\ &=-2a-\frac{a\left(1-b\right)}{b}\ln{\left(1-b\right)}+\frac{a}{b}\operatorname{Li}_{2}{\left(b\right)}\\ &~~~~~+\ln{\left(1+a\right)}\left[\operatorname{Li}_{2}{\left(b\right)}+\operatorname{Li}_{2}{\left(\frac{a}{a-1}\right)}-\operatorname{Li}_{2}{\left(\frac{a-b}{a-1}\right)}\right]+\operatorname{Li}_{3}{\left(a\right)}\\ &~~~~~+3\int_{0}^{1}\mathrm{d}y\,\frac{a\ln^{2}{\left(1-by\right)}}{2\left(1-ay\right)}-\int_{0}^{1}\mathrm{d}y\,\frac{a\ln^{2}{\left(\frac{y}{1-by}\right)}}{2\left(1-ay\right)}\\ &=-2a-\frac{a\left(1-b\right)}{b}\ln{\left(1-b\right)}+\frac{a}{b}\operatorname{Li}_{2}{\left(b\right)}\\ &~~~~~+\ln{\left(1+a\right)}\left[\operatorname{Li}_{2}{\left(b\right)}+\operatorname{Li}_{2}{\left(\frac{a}{a-1}\right)}-\operatorname{Li}_{2}{\left(\frac{a-b}{a-1}\right)}\right]+\operatorname{Li}_{3}{\left(a\right)}\\ &~~~~~+\frac12\ln^{3}{\left(\frac{1}{1-b}\right)}-\frac32\ln^{2}{\left(\frac{a-b}{a}\right)}\ln{\left(\frac{1-a}{1-b}\right)}\\ &~~~~~+3\ln{\left(\frac{a-b}{a}\right)}\left[\operatorname{Li}_{2}{\left(\frac{b}{a}\right)}-\operatorname{Li}_{2}{\left(\frac{b(1-a)}{a(1-b)}\right)}\right]\\ &~~~~~+3S_{1,2}{\left(\frac{b}{a}\right)}-3S_{1,2}{\left(\frac{b(1-a)}{a(1-b)}\right)}+\operatorname{Li}_{3}{\left(\frac{b}{b-1}\right)}-\operatorname{Li}_{3}{\left(\frac{a-b}{1-b}\right)}\\ &~~~~~+\ln{\left(1-b\right)}\left[\operatorname{Li}_{2}{\left(\frac{b}{b-1}\right)}-\operatorname{Li}_{2}{\left(\frac{a-b}{1-b}\right)}\right]+\frac12\ln^{2}{\left(1-b\right)}\ln{\left(1-a\right)},\\ \end{align}$$

where we've made use of a few integration formulas derived in appendices below.

Plugging back in the values $a=\frac12\land b=\frac13$ and making use of the appropriate polylogarithmic functional relations, one eventually obtains the following result:

$$\begin{align} \mathcal{S} &=-3\zeta{\left(3\right)}+3\operatorname{Li}_{3}{\left(\frac23\right)}+3\zeta{\left(2\right)}\ln{\left(\frac32\right)}+2\ln{\left(\frac32\right)}\operatorname{Li}_{2}{\left(-\frac12\right)}\\ &~~~~~-\frac32\ln{\left(2\right)}\ln^{2}{\left(\frac32\right)}-\frac12\ln^{3}{\left(\frac32\right)}+\frac32\operatorname{Li}_{2}{\left(\frac13\right)}+\ln{\left(\frac32\right)}-1.\blacksquare\\ \end{align}$$


Appendix 1. For $p<1\land q\le1$,

$$\begin{align} -\int_{0}^{1}\mathrm{d}y\,\frac{p\ln{\left(1-qy\right)}}{1-py} &=-\int_{0}^{1}\mathrm{d}y\,\frac{p}{1-py}\int_{0}^{1}\mathrm{d}x\,\frac{(-1)qy}{1-qxy}\\ &=\int_{0}^{1}\mathrm{d}y\int_{0}^{1}\mathrm{d}x\,\frac{pqy}{\left(1-py\right)\left(1-qxy\right)}\\ &=\int_{0}^{1}\mathrm{d}x\int_{0}^{1}\mathrm{d}y\,\frac{pqy}{\left(1-py\right)\left(1-qxy\right)}\\ &=\int_{0}^{1}\mathrm{d}x\int_{0}^{1}\mathrm{d}y\,\frac{pq}{\left(p-qx\right)}\left[\frac{1}{\left(1-py\right)}-\frac{1}{\left(1-qxy\right)}\right]\\ &=\int_{0}^{1}\mathrm{d}x\,\frac{1}{\left(p-qx\right)x}\left[qx\int_{0}^{1}\mathrm{d}y\,\frac{p}{\left(1-py\right)}-p\int_{0}^{1}\mathrm{d}y\,\frac{qx}{\left(1-qxy\right)}\right]\\ &=\int_{0}^{1}\mathrm{d}x\,\frac{1}{\left(p-qx\right)x}\left[-qx\ln{\left(1-p\right)}+p\ln{\left(1-qx\right)}\right]\\ &=\int_{0}^{1}\mathrm{d}x\,\frac{1}{\left(p-qx\right)x}\left[\left(p-qx\right)\ln{\left(1-qx\right)}+qx\ln{\left(\frac{1-qx}{1-p}\right)}\right]\\ &=\int_{0}^{1}\mathrm{d}x\,\frac{\ln{\left(1-qx\right)}}{x}+\int_{0}^{1}\mathrm{d}x\,\frac{q\ln{\left(\frac{1-qx}{1-p}\right)}}{\left(p-qx\right)}\\ &=-\operatorname{Li}_{2}{\left(q\right)}+\int_{0}^{1}\mathrm{d}x\,\frac{q\ln{\left(\frac{1-qx}{1-p}\right)}}{\left(p-qx\right)}\\ &=-\operatorname{Li}_{2}{\left(q\right)}+\int_{0}^{q}\mathrm{d}y\,\frac{\ln{\left(\frac{1-y}{1-p}\right)}}{\left(p-y\right)};~~~\small{\left[qx=y\right]}\\ &=-\operatorname{Li}_{2}{\left(q\right)}+\int_{1-q}^{1}\mathrm{d}t\,\frac{\ln{\left(\frac{t}{1-p}\right)}}{\left(p-1+t\right)};~~~\small{\left[1-y=t\right]}\\ &=-\operatorname{Li}_{2}{\left(q\right)}+\int_{\frac{1-q}{1-p}}^{\frac{1}{1-p}}\mathrm{d}u\,\frac{\ln{\left(u\right)}}{u-1};~~~\small{\left[t=(1-p)u\right]}\\ &=-\operatorname{Li}_{2}{\left(q\right)}+\int_{\frac{p-q}{p-1}}^{\frac{p}{p-1}}\mathrm{d}v\,\frac{\ln{\left(1-v\right)}}{v};~~~\small{\left[1-u=v\right]}\\ &=-\operatorname{Li}_{2}{\left(q\right)}-\operatorname{Li}_{2}{\left(\frac{p}{p-1}\right)}+\operatorname{Li}_{2}{\left(\frac{p-q}{p-1}\right)}.\\ \end{align}$$


Appendix 2. For $0<b<a<1$,

$$\begin{align} \int_{0}^{1}\mathrm{d}y\,\frac{a\ln^{2}{\left(1-by\right)}}{2\left(1-ay\right)} &=\frac12\int_{0}^{b}\mathrm{d}t\,\frac{a\ln^{2}{\left(1-t\right)}}{b-at};~~~\small{\left[by=t\right]}\\ &=\frac12\int_{1-b}^{1}\mathrm{d}u\,\frac{a\ln^{2}{\left(u\right)}}{b-a(1-u)};~~~\small{\left[1-t=u\right]}\\ &=-\frac12\int_{1-b}^{1}\mathrm{d}u\,\frac{a\ln^{2}{\left(u\right)}}{a-b-au}\\ &=\frac12\int_{\frac{a(1-b)}{a-b}}^{\frac{a}{a-b}}\mathrm{d}v\,\frac{\ln^{2}{\left(\frac{(a-b)v}{a}\right)}}{v-1};~~~\small{\left[u=\frac{(a-b)v}{a}\right]}\\ &=\frac12\int_{\frac{a-b}{a}}^{\frac{a-b}{a(1-b)}}\mathrm{d}w\,\frac{\ln^{2}{\left(\frac{a-b}{aw}\right)}}{w\left(1-w\right)};~~~\small{\left[v=\frac{1}{w}\right]}\\ &=\frac12\int_{\frac{a-b}{a}}^{\frac{a-b}{a(1-b)}}\mathrm{d}w\,\frac{\ln^{2}{\left(\frac{a-b}{aw}\right)}}{w}+\frac12\int_{\frac{a-b}{a}}^{\frac{a-b}{a(1-b)}}\mathrm{d}w\,\frac{\ln^{2}{\left(\frac{a-b}{aw}\right)}}{1-w}\\ &=\frac12\int_{1}^{\frac{1}{1-b}}\mathrm{d}x\,\frac{\ln^{2}{\left(x\right)}}{x};~~~\small{\left[\frac{aw}{a-b}=x\right]}\\ &~~~~~+\frac12\int_{\frac{a-b}{a}}^{\frac{a-b}{a(1-b)}}\mathrm{d}w\,\frac{\left[\ln{\left(\frac{a-b}{a}\right)}-\ln{\left(w\right)}\right]^{2}}{1-w}\\ &=\frac16\ln^{3}{\left(\frac{1}{1-b}\right)}\\ &~~~~~+\int_{\frac{b(1-a)}{a(1-b)}}^{\frac{b}{a}}\mathrm{d}x\,\frac{1}{2x}\bigg{[}\ln^{2}{\left(\frac{a-b}{a}\right)}-2\ln{\left(\frac{a-b}{a}\right)}\ln{\left(1-x\right)}\\ &~~~~~+\ln^{2}{\left(1-x\right)}\bigg{]};~~~\small{\left[w=1-x\right]}\\ &=\frac16\ln^{3}{\left(\frac{1}{1-b}\right)}+\frac12\ln^{2}{\left(\frac{a-b}{a}\right)}\int_{\frac{b(1-a)}{a(1-b)}}^{\frac{b}{a}}\mathrm{d}x\,\frac{1}{x}\\ &~~~~~-\ln{\left(\frac{a-b}{a}\right)}\int_{\frac{b(1-a)}{a(1-b)}}^{\frac{b}{a}}\mathrm{d}x\,\frac{\ln{\left(1-x\right)}}{x}+\int_{\frac{b(1-a)}{a(1-b)}}^{\frac{b}{a}}\mathrm{d}x\,\frac{\ln^{2}{\left(1-x\right)}}{2x}\\ &=\frac16\ln^{3}{\left(\frac{1}{1-b}\right)}-\frac12\ln^{2}{\left(\frac{a-b}{a}\right)}\ln{\left(\frac{1-a}{1-b}\right)}\\ &~~~~~+\ln{\left(\frac{a-b}{a}\right)}\left[\operatorname{Li}_{2}{\left(\frac{b}{a}\right)}-\operatorname{Li}_{2}{\left(\frac{b(1-a)}{a(1-b)}\right)}\right]\\ &~~~~~+S_{1,2}{\left(\frac{b}{a}\right)}-S_{1,2}{\left(\frac{b(1-a)}{a(1-b)}\right)}.\\ \end{align}$$


Appendix 3. Suppose $a<1\land b<1$, and set $p:=\frac{b}{b-1}\land q:=\frac{a-b}{1-b}$. Then,

$$\begin{align} -\int_{0}^{1}\mathrm{d}y\,\frac{a\ln^{2}{\left(\frac{y}{1-by}\right)}}{2\left(1-ay\right)} &=-\frac12\int_{0}^{1}\mathrm{d}y\,\frac{a\ln^{2}{\left(\frac{y}{1-by}\right)}}{1-ay}\\ &=-\frac12\int_{0}^{\frac{1}{1-b}}\mathrm{d}t\,\frac{1}{\left(1+bt\right)^{2}}\cdot\frac{a\ln^{2}{\left(t\right)}}{1-a\left(\frac{t}{1+bt}\right)};~~~\small{\left[\frac{y}{1-by}=t\right]}\\ &=-\frac12\int_{0}^{\frac{1}{1-b}}\mathrm{d}t\,\frac{1}{\left(1+bt\right)}\cdot\frac{a\ln^{2}{\left(t\right)}}{1-\left(a-b\right)t}\\ &=-\frac12\int_{0}^{\frac{1}{1-b}}\mathrm{d}t\,\left[\frac{b}{1+bt}+\frac{\left(a-b\right)}{1-\left(a-b\right)t}\right]\ln^{2}{\left(t\right)}\\ &=-\frac12\int_{0}^{1}\mathrm{d}u\,\frac{1}{1-b}\left[\frac{b}{1+\left(\frac{b}{1-b}\right)u}+\frac{\left(a-b\right)}{1-\left(\frac{a-b}{1-b}\right)u}\right]\\ &~~~~~\times\ln^{2}{\left(\frac{u}{1-b}\right)};~~~\small{\left[t=\frac{u}{1-b}\right]}\\ &=\frac12\int_{0}^{1}\mathrm{d}u\,\left[\frac{\left(\frac{b}{b-1}\right)}{1-\left(\frac{b}{b-1}\right)u}-\frac{\left(\frac{a-b}{1-b}\right)}{1-\left(\frac{a-b}{1-b}\right)u}\right]\ln^{2}{\left(\frac{u}{1-b}\right)}\\ &=\frac12\int_{0}^{1}\mathrm{d}u\,\left[\frac{\left(\frac{b}{b-1}\right)}{1-\left(\frac{b}{b-1}\right)u}-\frac{\left(\frac{a-b}{1-b}\right)}{1-\left(\frac{a-b}{1-b}\right)u}\right]\ln^{2}{\left(u\right)}\\ &~~~~~-\int_{0}^{1}\mathrm{d}u\,\left[\frac{\left(\frac{b}{b-1}\right)}{1-\left(\frac{b}{b-1}\right)u}-\frac{\left(\frac{a-b}{1-b}\right)}{1-\left(\frac{a-b}{1-b}\right)u}\right]\ln{\left(1-b\right)}\ln{\left(u\right)}\\ &~~~~~+\frac12\int_{0}^{1}\mathrm{d}u\,\left[\frac{\left(\frac{b}{b-1}\right)}{1-\left(\frac{b}{b-1}\right)u}-\frac{\left(\frac{a-b}{1-b}\right)}{1-\left(\frac{a-b}{1-b}\right)u}\right]\ln^{2}{\left(1-b\right)}\\ &=\frac12\int_{0}^{1}\mathrm{d}u\,\left[\frac{p}{1-pu}-\frac{q}{1-qu}\right]\ln^{2}{\left(u\right)}\\ &~~~~~+\int_{0}^{1}\mathrm{d}u\,\left[\frac{p}{1-pu}-\frac{q}{1-qu}\right]\ln{\left(1-p\right)}\ln{\left(u\right)}\\ &~~~~~+\frac12\int_{0}^{1}\mathrm{d}u\,\left[\frac{p}{1-pu}-\frac{q}{1-qu}\right]\ln^{2}{\left(1-p\right)}\\ &=\frac12\int_{0}^{1}\mathrm{d}u\,\frac{p\ln^{2}{\left(u\right)}}{1-pu}-\frac12\int_{0}^{1}\mathrm{d}u\,\frac{q\ln^{2}{\left(u\right)}}{1-qu}\\ &~~~~~+\ln{\left(1-p\right)}\left[\int_{0}^{1}\mathrm{d}u\,\frac{p\ln{\left(u\right)}}{1-pu}-\int_{0}^{1}\mathrm{d}u\,\frac{q\ln{\left(u\right)}}{1-qu}\right]\\ &~~~~~+\frac12\ln^{2}{\left(1-p\right)}\left[\int_{0}^{1}\mathrm{d}u\,\frac{p}{1-pu}-\int_{0}^{1}\mathrm{d}u\,\frac{q}{1-qu}\right]\\ &=\operatorname{Li}_{3}{\left(p\right)}-\operatorname{Li}_{3}{\left(q\right)}-\ln{\left(1-p\right)}\left[\operatorname{Li}_{2}{\left(p\right)}-\operatorname{Li}_{2}{\left(q\right)}\right]\\ &~~~~~-\frac12\ln^{2}{\left(1-p\right)}\left[\ln{\left(1-p\right)}-\ln{\left(1-q\right)}\right]\\ &=\operatorname{Li}_{3}{\left(p\right)}-\operatorname{Li}_{3}{\left(q\right)}-\ln{\left(1-p\right)}\left[\operatorname{Li}_{2}{\left(p\right)}-\operatorname{Li}_{2}{\left(q\right)}\right]\\ &~~~~~+\frac12\ln^{2}{\left(1-p\right)}\ln{\left(\frac{1-q}{1-p}\right)}\\ &=\operatorname{Li}_{3}{\left(\frac{b}{b-1}\right)}-\operatorname{Li}_{3}{\left(\frac{a-b}{1-b}\right)}+\ln{\left(1-b\right)}\left[\operatorname{Li}_{2}{\left(\frac{b}{b-1}\right)}-\operatorname{Li}_{2}{\left(\frac{a-b}{1-b}\right)}\right]\\ &~~~~~+\frac12\ln^{2}{\left(1-b\right)}\ln{\left(1-a\right)}.\\ \end{align}$$


$\endgroup$
6
  • 1
    $\begingroup$ I am speechless. I can only admire the beauty of your technique knowing I was nowhere close to a result with my attempts. Will try to understand your steps carefully and accept your answer tomorrow. Happy your numeric value matches. $\endgroup$
    – Srini
    Commented Jun 1 at 4:19
  • $\begingroup$ @Srini You're very kind. I feel like my answers tend to be too long-winded to be called beautiful. If there is any step in particular that you think needs clarifying, let me know. I'm also curious about the context of these double series. Did they arise in some application, or are they problems in a book somewhere? $\endgroup$
    – David H
    Commented Jun 1 at 14:28
  • $\begingroup$ The part I am not clear about is the function $S_{1,2}$. I don't know how to search for the definition of that in wolfram. You'll laugh if you know about the context. I am a math-enthusiast with no formal math education. But that doesn't prevent me from dreaming up solving big math problems (LOL). These double summations are coming from me attempting to find closed forms for some PolyLog(constants) by brute force. For example, the 2 giant summations you solved (in this and my previous question) are part of a very elaborate way to attempt closed forms. So far, after you solved these, contd... $\endgroup$
    – Srini
    Commented Jun 1 at 17:53
  • $\begingroup$ ... I get a very nice relationship between $Li_{2}(\frac23)$ and $Li_{2}(-\frac12)$. I can't tell if it is common knowledge for mathematicians. From me looking up known dilogarithms here(functions.wolfram.com/ZetaFunctionsandPolylogarithms/PolyLog/03/…), I can't find such a relationship. In case what I stated is unexpected, please let me know. I will post the details in a dedicated post. By brute force, I don't mean numeric methods. These are fully analytical solutions. $\endgroup$
    – Srini
    Commented Jun 1 at 17:57
  • $\begingroup$ Unfortunately, I just realized it is a known result following basic dilogarithm formulas. So there it goes :( $\endgroup$
    – Srini
    Commented Jun 1 at 18:15

You must log in to answer this question.

Not the answer you're looking for? Browse other questions tagged .