0
$\begingroup$

When working on another problem, I got the following expression \begin{align} & \Im\left[\log\left(\frac32\right) \operatorname{Li} _{2} \left(\frac32\right) - \operatorname{Li} _{3}\left(\frac32\right) + 2\operatorname{Li} _{3}(3)\right] \\[2mm] = & \ -\frac{\pi}{2} \log^{2}(2) -\frac{3\pi}{2}\log^{2}(3) + \pi\log(2)\log(3) \end{align}

I am new to PolyLogarithms in general and just learning about its properties.

Question: What properties of PolyLogarithms should I be referring to, to derive this systematically?

Note: I am not asking anyone to solve this for me, just guidance/hints.

$\endgroup$

1 Answer 1

3
$\begingroup$

Since you are looking for the imaginary part of the equation, the most important hint is that the polylogarithm $\operatorname{Li}_{s}(z)$of order $s \in \mathbb{R}$ is real if $ z< 1$ and complex if $z>1$ for $z\in \mathbb{R}$.

And the values of the imaginary part can be obtained from the formula:

$$ \boxed{\Im \operatorname{Li}_{s}(z) = -\frac{\pi \ln^{s-1}(x)}{\Gamma(s)}, \quad z>1}$$

Lets prove the case $s=2$. By definition:

$$\operatorname{Li}_2(z) = -\int_{0}^{z}\frac{\ln(1-x)}{x}dx$$

Suppose that $z>1$

$$\operatorname{Li}_2(z) = -\int_{0}^{1}\frac{\ln(1-x)}{x}dx - \int_{1}^{z}\frac{\ln(1-x)}{x}dx$$

However $\displaystyle \ln(1-x)= \ln|1-x| + i\pi$ for $x>1$ where we take the principal branch of $\displaystyle \mathbf{\ln}$:

\begin{eqnarray*} \operatorname{Li}_2(z) &=& -\int_{0}^{1}\frac{\ln(1-x)}{x}dx - \int_{1}^{z}\frac{\ln|1-x|}{x}dx - i\pi\int_{1}^{z}\frac{1}{x}dx \\ &=&-\int_{0}^{1}\frac{\ln(1-x)}{x}dx - \int_{1}^{z}\frac{\ln|1-x|}{x}dx - i\pi\ln(z) \end{eqnarray*}

Taking the imaginary part in both sides:

$$\boxed{ \Im \operatorname{Li}_{2}(z) = -\pi\ln(z), \quad z>1} $$

Examples:

$$ \Im \operatorname{Li}_{3}(3) = -\frac{\pi}{2}\ln^2(3)$$

$$ \Im \operatorname{Li}_{2}\left(\frac{3}{2}\right) = -\pi\ln\left(\frac{3}{2}\right) = -\pi\ln(3)+\pi\ln(2) $$

$\endgroup$

You must log in to answer this question.

Not the answer you're looking for? Browse other questions tagged .