Skip to main content

All Questions

2 votes
2 answers
223 views
+100

$\operatorname{Li}_{2} \left(\frac{1}{e^{\pi}} \right)$ as a limit of a sum

Working on the same lines as This/This and This I got the following expression for the Dilogarithm $\operatorname{Li}_{2} \left(\frac{1}{e^{\pi}} \right)$: $$\operatorname{Li}_{2} \left(\frac{1}{e^{\...
Srini's user avatar
  • 814
0 votes
0 answers
88 views

$\operatorname{Li}_{2} \left(\frac12 \right)$ vs $\operatorname{Li}_{2} \left(-\frac12 \right)$ : some long summation expressions

Throughout this post, $\operatorname{Li}_{2}(x)$ refers to Dilogarithm. While playing with some Fourier Transforms, I came up with the following expressions: $$2 \operatorname{Li}_{2}\left(\frac12 \...
Srini's user avatar
  • 814
4 votes
0 answers
123 views

Definite integral involving exponential and logarith function

Working with Dilogarimth function, we get the following definite integral $$\int_0^{\infty}\frac{t^2\,\ln^{n}(t)}{(1-e^{x\,t})(1-e^{y\,t})}\,dt$$ with $n=1,2,3,...$ and $x,y>0$. I wonder if is ...
popi's user avatar
  • 1,774
1 vote
0 answers
64 views

How to integrate $\int_0^\frac{1}{2}\frac{\ln(1+x)}{x}\ln\left(\frac{1}{x}-1\right)\mathrm{d}x$ [duplicate]

Question; how to integrate $$\int_0^\frac{1}{2}\frac{\ln(1+x)}{x}\ln\left(\frac{1}{x}-1\right)\mathrm{d}x$$ here is my attempt to solve the integral \begin{align} I&=\int_0^\frac{1}{2}\frac{\ln(1+...
Mods And Staff Are Not Fair's user avatar
9 votes
0 answers
254 views

Evaluate $\int_{0}^{1} \operatorname{Li}_3\left [ \left ( \frac{x(1-x)}{1+x} \right ) ^2 \right ] \text{d}x$

Possibly evaluate the integral? $$ \int_{0}^{1} \operatorname{Li}_3\left [ \left ( \frac{x(1-x)}{1+x} \right ) ^2 \right ] \text{d}x. $$ I came across this when playing with Legendre polynomials, ...
Setness Ramesory's user avatar
1 vote
0 answers
50 views

Polylogarithmically solving $\int\frac{\log(a_1x+b_1)\cdots\log(a_nx+b_n)}{px+q}\,dx$

I am now trying a direct approach to solving my question about $$\int_0^\infty\frac{\arctan a_1x\arctan a_2x\dots\arctan a_nx}{1+x^2}\,dx$$ where the $a_i$ are all positive. Note that the $\arctan$s ...
Parcly Taxel's user avatar
8 votes
1 answer
285 views

Evaluate $\int_0^\infty\frac{dx}{1+x^2}\prod_i\arctan a_ix$ (product of arctangents and Lorentzian)

Define $$I(a_1,\dots,a_n)=\int_0^\infty\frac{dx}{1+x^2}\prod_{i=1}^n\arctan a_ix$$ with $a_i>0$. By this answer $\newcommand{Li}{\operatorname{Li}_2}$ $$I(a,b)= \frac\pi4\left(\frac{\pi^2}6 -\Li\...
Parcly Taxel's user avatar
0 votes
0 answers
50 views

How to integrate $\frac{x^N\log(1+x)}{\sqrt{x^2+x_1^2}\sqrt{x^2+x_2^2}}$?

I am trying to compute the integral $$\int_{x_0}^{1}\frac{x^N\log(1+x)}{\sqrt{x^2+x_1^2}\sqrt{x^2+x_2^2}}\text{d}x$$ where $x_0, x_1$ and $x_2$ are related to some parameters $\kappa_\pm$ by $$x_0=\...
Anders W's user avatar
4 votes
0 answers
124 views

Is it possible to evaluate this integral? If not, is it possible to determine whether the result is an elliptic function or not?

I am trying to evaluate the integral $$F(x,y) = \int_0^1 du_1\, \int_0^{1-u_1} du_2\, \frac{\log f(x,y|u_1,u_2)}{f(x,y|u_1,u_2)}\,, \tag{1}$$ with $$f(x,y|u_1,u_2) := u_1(1-u_1)+y\, u_2(1-u_2) + (x-y-...
Pxx's user avatar
  • 697
3 votes
0 answers
186 views

how to find closed form for $\int_0^1 \frac{x}{x^2+1} \left(\ln(1-x) \right)^{n-1}dx$?

here in my answer I got real part for polylogarithm function at $1+i$ for natural $n$ $$ \Re\left(\text{Li}_n(1+i)\right)=\left(\frac{-1}{4}\right)^{n+1}A_n-B_n $$ where $$ B_n=\sum_{k=0}^{\lfloor\...
Faoler's user avatar
  • 1,577
4 votes
3 answers
136 views

I need help evaluating the integral $\int_{-\infty}^{\infty} \frac{\log(1+e^{-z})}{1+e^{-z}}dz$

I was playing around with the integral: $$\int_{-\infty}^{\infty} \frac{\log(1+e^{-z})}{1+e^{-z}}dz$$ I couldn't find a way of solving it, but I used WolframAlpha to find that the integral evaluated ...
Abdullah's user avatar
21 votes
1 answer
1k views

Solution of a meme integral: $\int \frac{x \sin(x)}{1+\cos(x)^2}\mathrm{d}x$

Context A few days ago I saw a meme published on a mathematics page in which they joked about the fact that $$\int\frac{x\sin(x)}{1+\cos(x)^2}\mathrm{d}x$$ was very long (and they put a screen shot of ...
Math Attack's user avatar
2 votes
2 answers
154 views

$\displaystyle\int_{0}^{\frac{\pi}{2}}\ln(1+\alpha^N\tan(x)^N)\mathrm{d}x\quad$ where $N\in\mathbb{N}$

$\color{red}{\textrm{Context}}$ I wanted to calculate the following integrals $$\displaystyle\int_{0}^{\frac{\pi}{2}}\ln(1+\tan(x)^N)\mathrm{d}x\qquad\text{for }N\in\mathbb{N}$$ and I used the Feymann ...
Math Attack's user avatar
0 votes
3 answers
80 views

Evaluating an integral from 0 to 1 with a parameter, (and a dilogarithm)

So I need to evaluate the following integral (in terms of a): $$\int_{0}^{1} \frac{\ln{|1-\frac{y}{a}|}}{y} dy$$ Till now I have tried u-sub ($u = \ln{|1-\frac{y}{a}|}$, $u=\frac{y}{a}$) and ...
Kraken's user avatar
  • 27
11 votes
0 answers
252 views

Solve the integral $\int_0^1 \frac{\ln^2(x+1)-\ln\left(\frac{2x}{x^2+1}\right)\ln x+\ln^2\left(\frac{x}{x+1}\right)}{x^2+1} dx$

I tried to solve this integral and got it, I showed firstly $$\int_0^1 \frac{\ln^2(x+1)+\ln^2\left(\frac{x}{x+1}\right)}{x^2+1} dx=2\Im\left[\text{Li}_3(1+i) \right] $$ and for other integral $$\int_0^...
Faoler's user avatar
  • 1,577

15 30 50 per page
1
2 3 4 5
19