Skip to main content

All Questions

0 votes
0 answers
39 views

Relations between Dilogarithms and Imaginary part of Hurwitz-Zeta function

I'm working through a paper that involves a problem concerning the calculation of the Imaginary part of the derivative of the Hurwitz-Zeta function $\zeta_H(z,a)$ with respect to $z$, evaluated at a ...
MultipleSearchingUnity's user avatar
1 vote
1 answer
57 views

Connection between the polylogarithm and the Bernoulli polynomials.

I have been studying the polylogarithm function and came across its relation with Bernoulli polynomials, as Wikipedia site asserts: For positive integer polylogarithm orders $s$, the Hurwitz zeta ...
Dr Potato's user avatar
  • 800
4 votes
3 answers
136 views

I need help evaluating the integral $\int_{-\infty}^{\infty} \frac{\log(1+e^{-z})}{1+e^{-z}}dz$

I was playing around with the integral: $$\int_{-\infty}^{\infty} \frac{\log(1+e^{-z})}{1+e^{-z}}dz$$ I couldn't find a way of solving it, but I used WolframAlpha to find that the integral evaluated ...
Abdullah's user avatar
2 votes
1 answer
71 views

Converting polylogarithms to Dirichlet L functions

When trying to simplify polylogarithms evaluated at some root of unity, namely $\text{Li}_s(\omega)$ for $\omega=e^{2\pi i ~r/n}$, it is reasonable to convert it to Hurwitz zeta functions or Dirichlet ...
Po1ynomial's user avatar
  • 1,686
0 votes
1 answer
93 views

$\sum_{i=1}^{n} \frac {x^{2i-1}}{\sqrt{2i}}$ as polylogarithm

$$\sum_{i=1}^{n} \frac {x^{2i-1}}{\sqrt{2i}}$$ It is very clear for me that it has to be polylogarithm function but as it is partial sum I tried to split the series as $$\sum_{i=1}^{\infty} \frac {x^{...
Adolf L.'s user avatar
1 vote
0 answers
58 views

Difference of polylogarithms of complex conjugate arguments

I have the expression $$\tag{1} \operatorname{Li}_{1/2}(z)-\operatorname{Li}_{1/2}(z^*) $$ Where $\operatorname{Li}$ is the polylogarithm and $^*$ denotes complex conjugation. The expression is ...
Sal's user avatar
  • 4,817
0 votes
0 answers
49 views

Further question on Logarithm product integral

How to perform $\int_0^1 \frac{\left(a_0\log(u)+a_1\log(1-u)+a_{2}\log(1-xu)\right)^9}{u-1} du $? Method tried: Intgration-by-parts Series expansion change of variable $\log(u)=x$ But I still can't ...
YU MU's user avatar
  • 99
1 vote
0 answers
156 views

Upper bounds regarding polylogarithm $Li_p(e^w)$ when $|w| > 2\pi$ and p negative real

$\textit{The Computations of Polylogarithms, 1992,Technical report UKC, University of Kent, Canterbury, UK}\\ $ by $\textbf{David C Wood}$ says that $$ Li_p(e^w) = \sum_{n\geq 0} \zeta(p-n)\frac{w^n}{...
user166305's user avatar
3 votes
1 answer
96 views

On $\int_0^{2\pi }\frac{\prod_{k=1}^m \text{Li}_{a_k}(e^{-ix})-\prod_{k=1}^m \text{Li}_{a_k}(e^{ix})}{e^{-ix}-e^{ix}} \, dx$

OP of this post evaluated a lot of remarkable polylog integrals (without proof), from which I conjecture a generalized one ($a_k\in \mathbb N$): $$\int_0^{2 \pi } \frac{\prod _{k=1}^m \text{Li}_{a_k}(...
Infiniticism's user avatar
  • 8,654
44 votes
2 answers
3k views

Remarkable logarithmic integral $\int_0^1 \frac{\log^2 (1-x) \log^2 x \log^3(1+x)}{x}dx$

We have the following result ($\text{Li}_{n}$ being the polylogarithm): $$\tag{*}\small{ \int_0^1 \log^2 (1-x) \log^2 x \log^3(1+x) \frac{dx}{x} = -168 \text{Li}_5(\frac{1}{2}) \zeta (3)+96 \text{Li}...
pisco's user avatar
  • 19.1k
0 votes
0 answers
34 views

How does $\lim\limits_{Re(s)\rightarrow -\infty} Li_s(e^{w})$ become $\Gamma(1-s)(-w)^{s-1}$?

I am trying to prove the following property of polylogarithm. $$\lim\limits_{Re(s)\rightarrow -\infty} Li_s(e^{w}) = \Gamma(1-s)(-w)^{s-1} \text{ for } -\pi < \Im(w) < \pi.$$ As per Wikipedia's "...
user166305's user avatar
30 votes
4 answers
2k views

Conjectural closed-form of $\int_0^1 \frac{\log^n (1-x) \log^{n-1} (1+x)}{1+x} dx$

Let $$I_n = \int_0^1 \frac{\log^n (1-x) \log^{n-1} (1+x)}{1+x} dx$$ In a recently published article, $I_n$ are evaluated for $n\leq 6$: $$\begin{aligned}I_1 &= \frac{\log ^2(2)}{2}-\frac{\pi ^2}{...
pisco's user avatar
  • 19.1k
2 votes
0 answers
55 views

Patterns for the polylogarithm $\rm{Li}_m\big(\tfrac12\big)$ and Nielsen polylogarithm $S_{n,p}\big(\tfrac12\big)$?

The polylogarithm $\rm{Li}_m\big(\tfrac12\big)$ has closed-forms known for $m=1,2,3$. It seems this triad pattern extends to the Nielsen generalized logarithm $S_{n,p}\,\big(\tfrac12\big)$ for $n=0,1,...
Tito Piezas III's user avatar
8 votes
0 answers
413 views

More on the log sine integral $\int_0^{\pi }\theta ^{3}\log^{3}\left ( 2\sin\frac{\theta }{2} \right )\mathrm{d}\theta$

I. In this post, the OP asks about the particular log sine integral, $$\mathrm{Ls}_{7}^{\left ( 3 \right )} =-\int_{0}^{\pi }\theta ^{3}\log^{3}\left ( 2\sin\frac{\theta }{2} \right )\,\mathrm{d}\...
Tito Piezas III's user avatar
8 votes
0 answers
295 views

Why does the tribonacci constant have a trilogarithm ladder?

When I came across the dilogarithm ladders of Coxeter and Landen, namely, $$\text{Li}_2\Big(\frac1{\phi^6}\Big)-4\text{Li}_2\Big(\frac1{\phi^3}\Big)-3\text{Li}_2\Big(\frac1{\phi^2}\Big)+6\text{Li}_2\...
Tito Piezas III's user avatar

15 30 50 per page