Skip to main content

Questions tagged [polylogarithm]

For questions about or related to polylogarithm functions.

9 votes
5 answers
2k views

A group of important generating functions involving harmonic number.

How to prove the following identities: $$\small{\sum_{n=1}^\infty\frac{H_{n}}{n^2}x^{n}=\operatorname{Li}_3(x)-\operatorname{Li}_3(1-x)+\ln(1-x)\operatorname{Li}_2(1-x)+\frac12\ln x\ln^2(1-x)+\zeta(3)...
Ali Shadhar's user avatar
  • 25.8k
42 votes
7 answers
7k views

Closed Form for the Imaginary Part of $\text{Li}_3\Big(\frac{1+i}2\Big)$

$\qquad\qquad$ Is there any closed form expression for the imaginary part of $~\text{Li}_3\bigg(\dfrac{1+i}2\bigg)$ ? Motivation: We already know that $~\Re\bigg[\text{Li}_3\bigg(\dfrac{1+i}2\bigg)\...
Lucian's user avatar
  • 48.5k
44 votes
2 answers
3k views

Remarkable logarithmic integral $\int_0^1 \frac{\log^2 (1-x) \log^2 x \log^3(1+x)}{x}dx$

We have the following result ($\text{Li}_{n}$ being the polylogarithm): $$\tag{*}\small{ \int_0^1 \log^2 (1-x) \log^2 x \log^3(1+x) \frac{dx}{x} = -168 \text{Li}_5(\frac{1}{2}) \zeta (3)+96 \text{Li}...
pisco's user avatar
  • 19.1k
4 votes
3 answers
1k views

Proof of dilogarithm reflection formula $\zeta(2)-\log(x)\log(1-x)=\operatorname{Li}_2(x)+\operatorname{Li}_2(1-x)$

How to prove $$\zeta(2)-\log(x)\log(1-x)=\operatorname{Li}_2(x)+\operatorname{Li}_2(1-x)$$ I havent started, any hints?
Amad27's user avatar
  • 11.2k
14 votes
2 answers
2k views

Definite Dilogarithm integral $\int^1_0 \frac{\operatorname{Li}_2^2(x)}{x}\, dx $

Prove the following $$\int^1_0 \frac{\operatorname{Li}_2^2(x)}{x}\, dx = -3\zeta(5)+\pi^2 \frac{\zeta(3)}{3}$$ where $$\operatorname{Li}^2_2(x) =\left(\int^x_0 \frac{\log(1-t)}{t}\,dt \right)^2$$
Zaid Alyafeai's user avatar
49 votes
9 answers
3k views

Closed-form of $\int_0^1 \frac{\operatorname{Li}_2\left( x \right)}{\sqrt{1-x^2}} \,dx $

I'm looking for a closed form of this integral. $$I = \int_0^1 \frac{\operatorname{Li}_2\left( x \right)}{\sqrt{1-x^2}} \,dx ,$$ where $\operatorname{Li}_2$ is the dilogarithm function. A numerical ...
user153012's user avatar
  • 12.4k
31 votes
3 answers
2k views

What is a closed form for ${\large\int}_0^1\frac{\ln^3(1+x)\,\ln^2x}xdx$?

Some time ago I asked How to find $\displaystyle{\int}_0^1\frac{\ln^3(1+x)\ln x}x\mathrm dx$. Thanks to great effort of several MSE users, we now know that \begin{align} \int_0^1\frac{\ln^3(1+x)\,\ln ...
Oksana Gimmel's user avatar
11 votes
2 answers
605 views

Compute $\int_0^{\pi/2} x^2\left(\sum_{n=1}^\infty (-1)^{n-1} \cos^n(x)\cos(nx)\right)dx$

How to prove $$I=\int_0^{\pi/2} x^2\left(\sum_{n=1}^\infty (-1)^{n-1} \cos^n(x)\cos(nx)\right)dx=\frac16\left(\frac{\pi^3}{12}-\pi\operatorname{Li}_2\left(\frac13\right)\right)$$ This problem is ...
Ali Shadhar's user avatar
  • 25.8k
6 votes
3 answers
3k views

Short calculation of the dilogarithm?

Is there a nice way to implement the dilogarithm function for real values, without actually performing the integration? A series solution would have been nice, but the series around $0$ has a ...
Nathaniel Bubis's user avatar
43 votes
7 answers
2k views

Triple Euler sum result $\sum_{k\geq 1}\frac{H_k^{(2)}H_k }{k^2}=\zeta(2)\zeta(3)+\zeta(5)$

In the following thread I arrived at the following result $$\sum_{k\geq 1}\frac{H_k^{(2)}H_k }{k^2}=\zeta(2)\zeta(3)+\zeta(5)$$ Defining $$H_k^{(p)}=\sum_{n=1}^k \frac{1}{n^p},\,\,\, H_k^{(1)}\...
Zaid Alyafeai's user avatar
17 votes
3 answers
825 views

A conjectured value for $\operatorname{Re} \operatorname{Li}_4 (1 + i)$

In evaluating the integral given here it would seem that: $$\operatorname{Re} \operatorname{Li}_4 (1 + i) \stackrel{?}{=} -\frac{5}{16} \operatorname{Li}_4 \left (\frac{1}{2} \right ) + \frac{97}{...
omegadot's user avatar
  • 11.8k
12 votes
2 answers
450 views

Closed forms of Nielsen polylogarithms $\int_0^1\frac{(\ln t)^{n-1}(\ln(1-z\,t))^p}{t}dt$?

(This summarizes my posts on Nielsen polylogs.) I. Question 1: How to complete the table below? Consider the special cases $z=-1$ and $z=\frac12$. Given the Nielsen generalized polylogarithm, $$S_{n,...
Tito Piezas III's user avatar
20 votes
3 answers
908 views

Conjecture $\Re\,\operatorname{Li}_2\left(\frac12+\frac i6\right)=\frac{7\pi^2}{48}-\frac13\arctan^22-\frac16\arctan^23-\frac18\ln^2(\tfrac{18}5)$

I numerically discovered the following conjecture: $$\Re\,\operatorname{Li}_2\left(\frac12+\frac i6\right)\stackrel{\color{gray}?}=\frac{7\pi^2}{48}-\frac{\arctan^22}3-\frac{\arctan^23}6-\frac18\ln^2\!...
Vladimir Reshetnikov's user avatar
17 votes
8 answers
1k views

About the integral $\int_{0}^{1}\frac{\log(x)\log^2(1+x)}{x}\,dx$

I came across the following Integral and have been completely stumped by it. $$\large\int_{0}^{1}\dfrac{\log(x)\log^2(1+x)}{x}dx$$ I'm extremely sorry, but the only thing I noticed was that the ...
Make a Difference's user avatar
14 votes
4 answers
2k views

Compute $\int_0^{1/2}\frac{\left(\operatorname{Li}_2(x)\right)^2}{x}dx$ or $\sum_{n=1}^\infty \frac{H_n^{(2)}}{n^32^n}$

Prove that I encountered this integral while working on the sum $\displaystyle \sum_{n=1}^\infty \frac{H_n^{(2)}}{n^32^n}$. Both of the integral and the sum were proposed by Cornel Valean: The ...
Ali Shadhar's user avatar
  • 25.8k
10 votes
2 answers
670 views

A surprising dilogarithm integral identity arising from a generalised point enclosure problem

This question asked: What is the probability that three points selected uniformly randomly on the unit circle contain a fixed point at distance $x$ from the circle's centre? I answered that ...
Parcly Taxel's user avatar
8 votes
0 answers
413 views

More on the log sine integral $\int_0^{\pi }\theta ^{3}\log^{3}\left ( 2\sin\frac{\theta }{2} \right )\mathrm{d}\theta$

I. In this post, the OP asks about the particular log sine integral, $$\mathrm{Ls}_{7}^{\left ( 3 \right )} =-\int_{0}^{\pi }\theta ^{3}\log^{3}\left ( 2\sin\frac{\theta }{2} \right )\,\mathrm{d}\...
Tito Piezas III's user avatar
6 votes
1 answer
308 views

On generalizing the harmonic sum $\sum_{n=1}^{\infty}\frac{H_n}{n^k}z^n = S_{k-1,2}(1)+\zeta(k+1)$ when $z=1$?

Given the nth harmonic number $ H_n = \sum_{j=1}^{n} \frac{1}{j}$. In this post it asks for the evaluation, $$\sum_{n=1}^{\infty}\frac{H_n}{n^3}=\tfrac{5}{4}\zeta(4)$$ while this post and this ...
Tito Piezas III's user avatar
41 votes
2 answers
2k views

Closed form for ${\large\int}_0^1\frac{\ln(1-x)\,\ln(1+x)\,\ln(1+2x)}{1+2x}dx$

Here is another integral I'm trying to evaluate: $$I=\int_0^1\frac{\ln(1-x)\,\ln(1+x)\,\ln(1+2x)}{1+2x}dx.\tag1$$ A numeric approximation is: $$I\approx-0....
Vladimir Reshetnikov's user avatar
32 votes
1 answer
818 views

On the relationship between $\Re\operatorname{Li}_n(1+i)$ and $\operatorname{Li}_n(1/2)$ when $n\ge5$

Motivation $\newcommand{Li}{\operatorname{Li}}$ It is already known that: $$\Re\Li_2(1+i)=\frac{\pi^2}{16}$$ $$\Re\Li_3(1+i)=\frac{\pi^2\ln2}{32}+\frac{35}{64}\zeta(3)$$ And by this question, ...
Kemono Chen's user avatar
  • 8,679
25 votes
2 answers
729 views

Definite integral of arcsine over square-root of quadratic

For $a,b\in\mathbb{R}\land0<a\le1\land0\le b$, define $\mathcal{I}{\left(a,b\right)}$ by the integral $$\mathcal{I}{\left(a,b\right)}:=\int_{0}^{a}\frac{\arcsin{\left(2x-1\right)}\,\mathrm{d}x}{\...
David H's user avatar
  • 30.7k
22 votes
2 answers
3k views

Extract real and imaginary parts of $\operatorname{Li}_2\left(i\left(2\pm\sqrt3\right)\right)$

We know that polylogarithms of complex argument sometimes have simple real and imaginary parts, e.g. $$\operatorname{Re}\big[\operatorname{Li}_2\left(i\right)\big]=-\frac{\pi^2}{48},\hspace{1em}\...
OlegK's user avatar
  • 1,928
22 votes
4 answers
1k views

Proving $\text{Li}_3\left(-\frac{1}{3}\right)-2 \text{Li}_3\left(\frac{1}{3}\right)= -\frac{\log^33}{6}+\frac{\pi^2}{6}\log 3-\frac{13\zeta(3)}{6}$?

Ramanujan gave the following identities for the Dilogarithm function: $$ \begin{align*} \operatorname{Li}_2\left(\frac{1}{3}\right)-\frac{1}{6}\operatorname{Li}_2\left(\frac{1}{9}\right) &=\frac{{...
Shobhit Bhatnagar's user avatar
20 votes
4 answers
1k views

Infinite Series $\sum\limits_{n=1}^\infty\frac{H_{2n+1}}{n^2}$

How can I prove that $$\sum_{n=1}^\infty\frac{H_{2n+1}}{n^2}=\frac{11}{4}\zeta(3)+\zeta(2)+4\log(2)-4$$ I think this post can help me, but I'm not sure.
user91500's user avatar
  • 5,626
17 votes
2 answers
894 views

A reason for $ 64\int_0^1 \left(\frac \pi 4+\arctan t\right)^2\cdot \log t\cdot\frac 1{1-t^2}\; dt =-\pi^4$ ...

Question: How to show the relation $$ J:=\int_0^1 \left(\frac \pi 4+\arctan t\right)^2\cdot \log t\cdot\frac 1{1-t^2}\; dt =-\frac 1{64}\pi^4 $$ (using a "minimal industry" of relations, ...
dan_fulea's user avatar
  • 34.2k
8 votes
2 answers
627 views

Closed form of a series (dilogarithm)

We are all aware of the dilogarithm function (Spence's function): $$\sum_{n=1}^{\infty} \frac{x^n}{n^2}, \;\; x \in (-\infty, 1]$$ Also it is known that: $$\sum_{n=1}^{\infty} \frac{\cos n x}{n^2}= ...
Tolaso's user avatar
  • 6,686
8 votes
3 answers
745 views

Prove $\int_{\frac{\pi}{20}}^{\frac{3\pi}{20}} \ln \tan x\,\,dx= - \frac{2G}{5}$

Context: This question asks to calculate a definite integral which turns out to be equal to $$\displaystyle 4 \, \text{Ti}_2\left( \tan \frac{3\pi}{20} \right) - 4 \, \text{Ti}_2\left( \tan \frac{\pi}{...
Noam Shalev - nospoon's user avatar
7 votes
3 answers
615 views

Closed-forms for the integral $\int_0^1\frac{\operatorname{Li}_n(x)}{1+x}dx$?

(This is related to this question.) Define the integral, $$I_n = \int_0^1\frac{\operatorname{Li}_n(x)}{1+x}dx$$ with polylogarithm $\operatorname{Li}_n(x)$. Given the Nielsen generalized polylogarithm ...
Tito Piezas III's user avatar
6 votes
1 answer
765 views

How to find $\sum_{n=1}^\infty\frac{(-1)^nH_{2n}}{n^3}$ and $\sum_{n=1}^\infty\frac{(-1)^nH_{2n}^{(2)}}{n^2}$ using real methods?

How to calculate $$\sum_{n=1}^\infty\frac{(-1)^nH_{2n}}{n^3}$$ and $$\sum_{n=1}^\infty\frac{(-1)^nH_{2n}^{(2)}}{n^2}$$ by means of real methods? This question was suggested by Cornel the author of the ...
Ali Shadhar's user avatar
  • 25.8k
6 votes
3 answers
691 views

How to find $\sum_{n=1}^{\infty}\frac{H_nH_{2n}}{n^2}$ using real analysis and in an elegant way?

I have already evaluated this sum: \begin{equation*} \sum_{n=1}^{\infty}\frac{H_nH_{2n}}{n^2}=4\operatorname{Li_4}\left( \frac12\right)+\frac{13}{8}\zeta(4)+\frac72\ln2\zeta(3)-\ln^22\zeta(2)+\frac16\...
Ali Shadhar's user avatar
  • 25.8k
1 vote
1 answer
435 views

An integral involving a Gaussian, error functions and the Owen's T function.

This question is closely related to An integral involving a Gaussian and an Owen's T function. and An integral involving error functions and a Gaussian . Let $\nu_1 \ge 1$ and $\nu_2 \ge 1$ be ...
Przemo's user avatar
  • 11.5k
25 votes
4 answers
1k views

Evaluate $\int_{0}^{\pi }\theta ^{3}\log^{3}\left ( 2\sin\frac{\theta }{2} \right )\mathrm{d}\theta $

Evaluate $$\int_{0}^{\pi }\theta ^{3}\log^{3}\left ( 2\sin\frac{\theta }{2} \right )\,\mathrm{d}\theta $$ Several days ago,I found this interesting integral from a paper about generalized log-sine ...
Renascence_5.'s user avatar
21 votes
3 answers
2k views

Evaluate $\int_0^1\arcsin^2(\frac{\sqrt{-x}}{2}) (\log^3 x) (\frac{8}{1+x}+\frac{1}{x}) \, dx$

Here is an interesting integral, which is equivalent to the title $$\tag{1}\int_0^1 \log ^2\left(\sqrt{\frac{x}{4}+1}-\sqrt{\frac{x}{4}}\right) (\log ^3x) \left(\frac{8}{1+x}+\frac{1}{x}\right) \, dx =...
pisco's user avatar
  • 19.1k
18 votes
3 answers
930 views

Closed form for $\int_0^e\mathrm{Li}_2(\ln{x})\,dx$?

Inspired by this question and this answer, I decided to investigate the family of integrals $$I(k)=\int_0^e\mathrm{Li}_k(\ln{x})\,dx,\tag{1}$$ where $\mathrm{Li}_k(z)$ represents the polylogarithm of ...
teadawg1337's user avatar
17 votes
2 answers
834 views

Sum $\sum^\infty_{n=1}\frac{(-1)^nH_n}{(2n+1)^2}$

I would like to seek your assistance in computing the sum $$\sum^\infty_{n=1}\frac{(-1)^nH_n}{(2n+1)^2}$$ I am stumped by this sum. I have tried summing the residues of $\displaystyle f(z)=\frac{\pi\...
SuperAbound's user avatar
  • 5,604
16 votes
5 answers
1k views

Double Euler sum $ \sum_{k\geq 1} \frac{H_k^{(2)} H_k}{k^3} $

I proved the following result $$\displaystyle \sum_{k\geq 1} \frac{H_k^{(2)} H_k}{k^3} =- \frac{97}{12} \zeta(6)+\frac{7}{4}\zeta(4)\zeta(2) + \frac{5}{2}\zeta(3)^2+\frac{2}{3}\zeta(2)^3$$ After ...
Zaid Alyafeai's user avatar
15 votes
3 answers
956 views

Compute $\int_0^\infty \frac{\operatorname{Li}_3(x)}{1+x^2}\ dx$

How to evaluate $$\int_0^\infty \frac{\operatorname{Li}_3(x)}{1+x^2}\ dx\ ?$$ where $\displaystyle\operatorname{Li}_3(x)=\sum_{n=1}^\infty\frac{x^n}{n^3}$ , $|x|\leq1$ I came across this integral ...
Ali Shadhar's user avatar
  • 25.8k
15 votes
3 answers
2k views

Simplification of an expression containing $\operatorname{Li}_3(x)$ terms

In my computations I ended up with this result: $$\mathcal{K}=78\operatorname{Li}_3\left(\frac13\right)+15\operatorname{Li}_3\left(\frac23\right)-64\operatorname{Li}_3\left(\frac15\right)-102 \...
Oksana Gimmel's user avatar
14 votes
6 answers
3k views

Inverse of the polylogarithm

The polylogarithm can be defined using the power series $$ \operatorname{Li}_s(z) = \sum_{k=1}^\infty {z^k \over k^s}. $$ Contiguous polylogs have the ladder operators $$ \operatorname{Li}_{s+1}(z) ...
Simon's user avatar
  • 1,136
14 votes
5 answers
847 views

Integral $\int^1_0\frac{\ln{x} \ \mathrm{Li}_2(x)}{1-x}dx$

I would like to know how to evaluate the integral $$\int^1_0\frac{\ln{x} \ \mathrm{Li}_2(x)}{1-x}dx$$ I tried expanding the integrand as a series but made little progress as I do not know how to ...
SuperAbound's user avatar
  • 5,604
13 votes
2 answers
522 views

On the integral $\int_{0}^{1/2}\frac{\text{Li}_3(1-z)}{\sqrt{z(1-z)}}\,dz$

This questions is related to my previous one. I am interested in a explicit evaluation in terms of Euler sums for $$ \int_{0}^{\pi/4}\text{Li}_3(\cos^2\theta)\,d\theta = \frac{1}{2}\int_{0}^{1/2}\...
Jack D'Aurizio's user avatar
12 votes
1 answer
611 views

More on the integral $\int_0^1\int_0^1\int_0^1\int_0^1\frac{1}{(1+x) (1+y) (1+z)(1+w) (1+ x y z w)} \ dx \ dy \ dz \ dw$

In this post, the OP asks about the integral, $$I = \int_0^1\int_0^1\int_0^1\int_0^1\frac{1}{(1+x) (1+y) (1+z)(1+w) (1+ x y z w)} \ dx \ dy \ dz \ dw$$ I. User DavidH gave a beautiful (albeit long)...
Tito Piezas III's user avatar
11 votes
6 answers
478 views

Prove $\int_{0}^{1} \frac{\sin^{-1}(x)}{x} dx = \frac{\pi}{2}\ln2$

I stumbled upon the interesting definite integral \begin{equation} \int\limits_0^1 \frac{\sin^{-1}(x)}{x} dx = \frac{\pi}{2}\ln2 \end{equation} Here is my proof of this result. Let $u=\sin^{-1}(x)$ ...
poweierstrass's user avatar
11 votes
3 answers
481 views

Closed-form of $\int_0^1 \operatorname{Li}_p(x) \, dx$

While I've studied integrals involving polylogarithm functions I've observed that $$\int_0^1 \operatorname{Li}_p(x) \, dx \stackrel{?}{=} \sum_{k=2}^p(-1)^{p+k}\zeta(k)+(-1)^{p+1},\tag{1}$$ for any ...
user153012's user avatar
  • 12.4k
10 votes
1 answer
991 views

Computing $\int_0^1\frac{\ln^3(1-x)\ln(1+x)}{x}dx$ or $\sum_{n=1}^\infty\frac{H_n^{(4)}}{n2^n}$

Challenging Integral: \begin{align} I=\int_0^1\frac{\ln^3(1-x)\ln(1+x)}{x}dx&=6\operatorname{Li}_5\left(\frac12\right)+6\ln2\operatorname{Li}_4\left(\frac12\right)-\frac{81}{16}\zeta(5)-\frac{21}{...
Ali Shadhar's user avatar
  • 25.8k
9 votes
4 answers
596 views

Quadirlogarithm value $\operatorname{Li}_4 \left( \frac{1}{2}\right)$

Is there a known closed form for the following $$\operatorname{Li}_4 \left( \frac{1}{2}\right)$$ I know that we can derive the closed of $\operatorname{Li}_1 \left( \frac{1}{2}\right),\operatorname{...
Zaid Alyafeai's user avatar
9 votes
2 answers
1k views

Polylogarithms of negative integer order

The polylogarithms of order $s$ are defined by $$\mathrm{Li}_s (z) = \sum_{k \geqslant 1} \frac{z^k}{k^s}, \quad |z| < 1.$$ From the above definition, derivatives for the polylogarithms ...
omegadot's user avatar
  • 11.8k
8 votes
7 answers
907 views

Evaluating $\int^1_0 \frac{\operatorname{Li}_3(x)}{1-x} \log(x)\, \mathrm dx$

How would you solve the following $$\int^1_0 \frac{\operatorname{Li}_3(x)}{1-x} \log(x)\, \mathrm dx$$ I might be able to relate the integral to Euler sums .
Zaid Alyafeai's user avatar
8 votes
2 answers
1k views

Evaluate $\int_0^1\frac{\ln x\ln(1-x)}{1+x^2}\ dx$

How to prove $\ \displaystyle\int_0^1\frac{\ln x\ln(1-x)}{1+x^2}\ dx=\frac{3\pi^3}{64}+\frac{\pi}{16}\ln^22-\Im\operatorname{Li}_3(1+i)$ Where $\ \displaystyle\operatorname{Li}_3(x)=\sum_{n=1}^\infty\...
Ali Shadhar's user avatar
  • 25.8k
8 votes
2 answers
428 views

Evaluating $\int_0^\infty\frac{\tan^{-1}av\cot^{-1}av}{1+v^2}\,dv$

The Weierstrass substitution stuck in my head after I used it to prove the rigidity of the braced hendecagon (and tridecagon). Thus I had another look at this question which I eventually answered in a ...
Parcly Taxel's user avatar

15 30 50 per page
1
2 3 4 5