Skip to main content

Questions tagged [polylogarithm]

For questions about or related to polylogarithm functions.

9 votes
5 answers
2k views

A group of important generating functions involving harmonic number.

How to prove the following identities: $$\small{\sum_{n=1}^\infty\frac{H_{n}}{n^2}x^{n}=\operatorname{Li}_3(x)-\operatorname{Li}_3(1-x)+\ln(1-x)\operatorname{Li}_2(1-x)+\frac12\ln x\ln^2(1-x)+\zeta(3)...
Ali Shadhar's user avatar
  • 25.8k
42 votes
7 answers
7k views

Closed Form for the Imaginary Part of $\text{Li}_3\Big(\frac{1+i}2\Big)$

$\qquad\qquad$ Is there any closed form expression for the imaginary part of $~\text{Li}_3\bigg(\dfrac{1+i}2\bigg)$ ? Motivation: We already know that $~\Re\bigg[\text{Li}_3\bigg(\dfrac{1+i}2\bigg)\...
Lucian's user avatar
  • 48.5k
44 votes
2 answers
3k views

Remarkable logarithmic integral $\int_0^1 \frac{\log^2 (1-x) \log^2 x \log^3(1+x)}{x}dx$

We have the following result ($\text{Li}_{n}$ being the polylogarithm): $$\tag{*}\small{ \int_0^1 \log^2 (1-x) \log^2 x \log^3(1+x) \frac{dx}{x} = -168 \text{Li}_5(\frac{1}{2}) \zeta (3)+96 \text{Li}...
pisco's user avatar
  • 19.1k
4 votes
3 answers
1k views

Proof of dilogarithm reflection formula $\zeta(2)-\log(x)\log(1-x)=\operatorname{Li}_2(x)+\operatorname{Li}_2(1-x)$

How to prove $$\zeta(2)-\log(x)\log(1-x)=\operatorname{Li}_2(x)+\operatorname{Li}_2(1-x)$$ I havent started, any hints?
Amad27's user avatar
  • 11.2k
14 votes
2 answers
2k views

Definite Dilogarithm integral $\int^1_0 \frac{\operatorname{Li}_2^2(x)}{x}\, dx $

Prove the following $$\int^1_0 \frac{\operatorname{Li}_2^2(x)}{x}\, dx = -3\zeta(5)+\pi^2 \frac{\zeta(3)}{3}$$ where $$\operatorname{Li}^2_2(x) =\left(\int^x_0 \frac{\log(1-t)}{t}\,dt \right)^2$$
Zaid Alyafeai's user avatar
49 votes
9 answers
3k views

Closed-form of $\int_0^1 \frac{\operatorname{Li}_2\left( x \right)}{\sqrt{1-x^2}} \,dx $

I'm looking for a closed form of this integral. $$I = \int_0^1 \frac{\operatorname{Li}_2\left( x \right)}{\sqrt{1-x^2}} \,dx ,$$ where $\operatorname{Li}_2$ is the dilogarithm function. A numerical ...
user153012's user avatar
  • 12.4k
31 votes
3 answers
2k views

What is a closed form for ${\large\int}_0^1\frac{\ln^3(1+x)\,\ln^2x}xdx$?

Some time ago I asked How to find $\displaystyle{\int}_0^1\frac{\ln^3(1+x)\ln x}x\mathrm dx$. Thanks to great effort of several MSE users, we now know that \begin{align} \int_0^1\frac{\ln^3(1+x)\,\ln ...
Oksana Gimmel's user avatar
11 votes
2 answers
605 views

Compute $\int_0^{\pi/2} x^2\left(\sum_{n=1}^\infty (-1)^{n-1} \cos^n(x)\cos(nx)\right)dx$

How to prove $$I=\int_0^{\pi/2} x^2\left(\sum_{n=1}^\infty (-1)^{n-1} \cos^n(x)\cos(nx)\right)dx=\frac16\left(\frac{\pi^3}{12}-\pi\operatorname{Li}_2\left(\frac13\right)\right)$$ This problem is ...
Ali Shadhar's user avatar
  • 25.8k
6 votes
3 answers
3k views

Short calculation of the dilogarithm?

Is there a nice way to implement the dilogarithm function for real values, without actually performing the integration? A series solution would have been nice, but the series around $0$ has a ...
Nathaniel Bubis's user avatar
43 votes
7 answers
2k views

Triple Euler sum result $\sum_{k\geq 1}\frac{H_k^{(2)}H_k }{k^2}=\zeta(2)\zeta(3)+\zeta(5)$

In the following thread I arrived at the following result $$\sum_{k\geq 1}\frac{H_k^{(2)}H_k }{k^2}=\zeta(2)\zeta(3)+\zeta(5)$$ Defining $$H_k^{(p)}=\sum_{n=1}^k \frac{1}{n^p},\,\,\, H_k^{(1)}\...
Zaid Alyafeai's user avatar
17 votes
3 answers
825 views

A conjectured value for $\operatorname{Re} \operatorname{Li}_4 (1 + i)$

In evaluating the integral given here it would seem that: $$\operatorname{Re} \operatorname{Li}_4 (1 + i) \stackrel{?}{=} -\frac{5}{16} \operatorname{Li}_4 \left (\frac{1}{2} \right ) + \frac{97}{...
omegadot's user avatar
  • 11.8k
12 votes
2 answers
450 views

Closed forms of Nielsen polylogarithms $\int_0^1\frac{(\ln t)^{n-1}(\ln(1-z\,t))^p}{t}dt$?

(This summarizes my posts on Nielsen polylogs.) I. Question 1: How to complete the table below? Consider the special cases $z=-1$ and $z=\frac12$. Given the Nielsen generalized polylogarithm, $$S_{n,...
Tito Piezas III's user avatar
20 votes
3 answers
908 views

Conjecture $\Re\,\operatorname{Li}_2\left(\frac12+\frac i6\right)=\frac{7\pi^2}{48}-\frac13\arctan^22-\frac16\arctan^23-\frac18\ln^2(\tfrac{18}5)$

I numerically discovered the following conjecture: $$\Re\,\operatorname{Li}_2\left(\frac12+\frac i6\right)\stackrel{\color{gray}?}=\frac{7\pi^2}{48}-\frac{\arctan^22}3-\frac{\arctan^23}6-\frac18\ln^2\!...
Vladimir Reshetnikov's user avatar
17 votes
8 answers
1k views

About the integral $\int_{0}^{1}\frac{\log(x)\log^2(1+x)}{x}\,dx$

I came across the following Integral and have been completely stumped by it. $$\large\int_{0}^{1}\dfrac{\log(x)\log^2(1+x)}{x}dx$$ I'm extremely sorry, but the only thing I noticed was that the ...
Make a Difference's user avatar
14 votes
4 answers
2k views

Compute $\int_0^{1/2}\frac{\left(\operatorname{Li}_2(x)\right)^2}{x}dx$ or $\sum_{n=1}^\infty \frac{H_n^{(2)}}{n^32^n}$

Prove that I encountered this integral while working on the sum $\displaystyle \sum_{n=1}^\infty \frac{H_n^{(2)}}{n^32^n}$. Both of the integral and the sum were proposed by Cornel Valean: The ...
Ali Shadhar's user avatar
  • 25.8k
10 votes
2 answers
670 views

A surprising dilogarithm integral identity arising from a generalised point enclosure problem

This question asked: What is the probability that three points selected uniformly randomly on the unit circle contain a fixed point at distance $x$ from the circle's centre? I answered that ...
Parcly Taxel's user avatar
8 votes
0 answers
413 views

More on the log sine integral $\int_0^{\pi }\theta ^{3}\log^{3}\left ( 2\sin\frac{\theta }{2} \right )\mathrm{d}\theta$

I. In this post, the OP asks about the particular log sine integral, $$\mathrm{Ls}_{7}^{\left ( 3 \right )} =-\int_{0}^{\pi }\theta ^{3}\log^{3}\left ( 2\sin\frac{\theta }{2} \right )\,\mathrm{d}\...
Tito Piezas III's user avatar
6 votes
1 answer
308 views

On generalizing the harmonic sum $\sum_{n=1}^{\infty}\frac{H_n}{n^k}z^n = S_{k-1,2}(1)+\zeta(k+1)$ when $z=1$?

Given the nth harmonic number $ H_n = \sum_{j=1}^{n} \frac{1}{j}$. In this post it asks for the evaluation, $$\sum_{n=1}^{\infty}\frac{H_n}{n^3}=\tfrac{5}{4}\zeta(4)$$ while this post and this ...
Tito Piezas III's user avatar
41 votes
2 answers
2k views

Closed form for ${\large\int}_0^1\frac{\ln(1-x)\,\ln(1+x)\,\ln(1+2x)}{1+2x}dx$

Here is another integral I'm trying to evaluate: $$I=\int_0^1\frac{\ln(1-x)\,\ln(1+x)\,\ln(1+2x)}{1+2x}dx.\tag1$$ A numeric approximation is: $$I\approx-0....
Vladimir Reshetnikov's user avatar
32 votes
1 answer
818 views

On the relationship between $\Re\operatorname{Li}_n(1+i)$ and $\operatorname{Li}_n(1/2)$ when $n\ge5$

Motivation $\newcommand{Li}{\operatorname{Li}}$ It is already known that: $$\Re\Li_2(1+i)=\frac{\pi^2}{16}$$ $$\Re\Li_3(1+i)=\frac{\pi^2\ln2}{32}+\frac{35}{64}\zeta(3)$$ And by this question, ...
Kemono Chen's user avatar
  • 8,679
25 votes
2 answers
729 views

Definite integral of arcsine over square-root of quadratic

For $a,b\in\mathbb{R}\land0<a\le1\land0\le b$, define $\mathcal{I}{\left(a,b\right)}$ by the integral $$\mathcal{I}{\left(a,b\right)}:=\int_{0}^{a}\frac{\arcsin{\left(2x-1\right)}\,\mathrm{d}x}{\...
David H's user avatar
  • 30.7k
22 votes
4 answers
1k views

Proving $\text{Li}_3\left(-\frac{1}{3}\right)-2 \text{Li}_3\left(\frac{1}{3}\right)= -\frac{\log^33}{6}+\frac{\pi^2}{6}\log 3-\frac{13\zeta(3)}{6}$?

Ramanujan gave the following identities for the Dilogarithm function: $$ \begin{align*} \operatorname{Li}_2\left(\frac{1}{3}\right)-\frac{1}{6}\operatorname{Li}_2\left(\frac{1}{9}\right) &=\frac{{...
Shobhit Bhatnagar's user avatar
22 votes
2 answers
3k views

Extract real and imaginary parts of $\operatorname{Li}_2\left(i\left(2\pm\sqrt3\right)\right)$

We know that polylogarithms of complex argument sometimes have simple real and imaginary parts, e.g. $$\operatorname{Re}\big[\operatorname{Li}_2\left(i\right)\big]=-\frac{\pi^2}{48},\hspace{1em}\...
OlegK's user avatar
  • 1,928
20 votes
4 answers
1k views

Infinite Series $\sum\limits_{n=1}^\infty\frac{H_{2n+1}}{n^2}$

How can I prove that $$\sum_{n=1}^\infty\frac{H_{2n+1}}{n^2}=\frac{11}{4}\zeta(3)+\zeta(2)+4\log(2)-4$$ I think this post can help me, but I'm not sure.
user91500's user avatar
  • 5,626
17 votes
2 answers
894 views

A reason for $ 64\int_0^1 \left(\frac \pi 4+\arctan t\right)^2\cdot \log t\cdot\frac 1{1-t^2}\; dt =-\pi^4$ ...

Question: How to show the relation $$ J:=\int_0^1 \left(\frac \pi 4+\arctan t\right)^2\cdot \log t\cdot\frac 1{1-t^2}\; dt =-\frac 1{64}\pi^4 $$ (using a "minimal industry" of relations, ...
dan_fulea's user avatar
  • 34.2k
8 votes
3 answers
745 views

Prove $\int_{\frac{\pi}{20}}^{\frac{3\pi}{20}} \ln \tan x\,\,dx= - \frac{2G}{5}$

Context: This question asks to calculate a definite integral which turns out to be equal to $$\displaystyle 4 \, \text{Ti}_2\left( \tan \frac{3\pi}{20} \right) - 4 \, \text{Ti}_2\left( \tan \frac{\pi}{...
Noam Shalev - nospoon's user avatar
8 votes
2 answers
627 views

Closed form of a series (dilogarithm)

We are all aware of the dilogarithm function (Spence's function): $$\sum_{n=1}^{\infty} \frac{x^n}{n^2}, \;\; x \in (-\infty, 1]$$ Also it is known that: $$\sum_{n=1}^{\infty} \frac{\cos n x}{n^2}= ...
Tolaso's user avatar
  • 6,686
7 votes
3 answers
615 views

Closed-forms for the integral $\int_0^1\frac{\operatorname{Li}_n(x)}{1+x}dx$?

(This is related to this question.) Define the integral, $$I_n = \int_0^1\frac{\operatorname{Li}_n(x)}{1+x}dx$$ with polylogarithm $\operatorname{Li}_n(x)$. Given the Nielsen generalized polylogarithm ...
Tito Piezas III's user avatar
6 votes
1 answer
765 views

How to find $\sum_{n=1}^\infty\frac{(-1)^nH_{2n}}{n^3}$ and $\sum_{n=1}^\infty\frac{(-1)^nH_{2n}^{(2)}}{n^2}$ using real methods?

How to calculate $$\sum_{n=1}^\infty\frac{(-1)^nH_{2n}}{n^3}$$ and $$\sum_{n=1}^\infty\frac{(-1)^nH_{2n}^{(2)}}{n^2}$$ by means of real methods? This question was suggested by Cornel the author of the ...
Ali Shadhar's user avatar
  • 25.8k
6 votes
3 answers
691 views

How to find $\sum_{n=1}^{\infty}\frac{H_nH_{2n}}{n^2}$ using real analysis and in an elegant way?

I have already evaluated this sum: \begin{equation*} \sum_{n=1}^{\infty}\frac{H_nH_{2n}}{n^2}=4\operatorname{Li_4}\left( \frac12\right)+\frac{13}{8}\zeta(4)+\frac72\ln2\zeta(3)-\ln^22\zeta(2)+\frac16\...
Ali Shadhar's user avatar
  • 25.8k

15 30 50 per page
1
2 3 4 5
7