Skip to main content

Questions tagged [polylogarithm]

For questions about or related to polylogarithm functions.

0 votes
1 answer
130 views

Closed form for $\rm{Li }_2\left( -{\frac {i\sqrt {3}}{3}} \right)$

In my personal research with Maple i find this closed form : $$\operatorname{Li }_2\left( -{\frac {i\sqrt {3}}{3}} \right)={\frac {{\pi}^{2}}{24}}+{\frac {\ln \left( 2 \right) \ln \left( 3 \right) }...
Dens's user avatar
  • 303
2 votes
0 answers
36 views

Canonical reference for algebraic theory of polylogs?

I've noticed that there are lots of similar-looking (at least to my untrained eye) questions on Math Stackexchange involving polylogarithms, all equally delicious, in which the OP asks about how to ...
Franklin Pezzuti Dyer's user avatar
1 vote
3 answers
146 views

Evaluating improper integral $\int_0^1 \frac{\log(x)}{x+\alpha}\; dx$ for small positive $\alpha$

Let $\alpha$ be a small positive real number. How do I obtain $$ I = \int_0^1 \frac{\log(x)}{x+\alpha}\; dx = -\frac{1}{2}(\log\alpha)^2 - \frac{\pi^2}{6} - \operatorname{Li}_2(-\alpha)$$? Maxima told ...
CoiL's user avatar
  • 23
35 votes
0 answers
2k views

Are these generalizations known in the literature?

By using $$\int_0^\infty\frac{\ln^{2n}(x)}{1+x^2}dx=|E_{2n}|\left(\frac{\pi}{2}\right)^{2n+1}\tag{a}$$ and $$\text{Li}_{a}(-z)+(-1)^a\text{Li}_{a}(-1/z)=-2\sum_{k=0}^{\lfloor{a/2}\rfloor }\frac{\eta(...
Ali Shadhar's user avatar
  • 25.8k
0 votes
1 answer
148 views

Evaluate: ${{\int_{0}^{1}\frac{\ln(1+x)^5}{x+2}dx-\int_{0}^{1}\frac{\ln(1+x)^5}{x+3}dx+5\ln2\int_{0}^{1}\frac{\ln(1+x)^4}{x+3}dx}}$

Evaluate: $${{I=\int_{0}^{1}\frac{\ln(1+x)^5}{x+2}dx-\int_{0}^{1}\frac{\ln(1+x)^5}{x+3}dx+5\ln2\int_{0}^{1}\frac{\ln(1+x)^4}{x+3}dx.}}$$ The answer is given below: $$ I=-\frac{7}{12}\pi^4\ln^2(2)-\...
Setness Ramesory's user avatar
2 votes
1 answer
217 views

Can this formula for $\zeta(3)$ be proven or simplified further?

This question is related to the equivalence of formulas (1) and (2) below where formula (1) is from a post on the Harmonic Series Facebook group and formula (2) is based on evaluation of the integral ...
Steven Clark's user avatar
  • 7,631
10 votes
1 answer
410 views

Proving $\int_0^{1/2}\frac{\text{Li}_2(-x)}{1-x}dx=-\text{Li}_3\left(-\frac12\right)-\frac{13}{24}\zeta(3)$

By comparing some results, I found that $$\int_0^{\frac12}\frac{\text{Li}_2(-x)}{1-x}dx=-\text{Li}_3\left(-\frac12\right)-\frac{13}{24}\zeta(3).\tag{1}$$ I tried to prove it starting with applying IBP:...
Ali Shadhar's user avatar
  • 25.8k
1 vote
0 answers
117 views

Closed-form for $\int_0^{a^2} \mathrm{Ei} (-s) \frac{1 - e^s}{s} ds$

In my partial answer to this question: Integral involving polylogarithm and an exponential, I arrive at the integral $$ \int_0^{a^2} \mathrm{Ei} (-s) \frac{1 - e^s}{s} ds , ~~~~ (\ast) $$ where $a \in ...
o0BlueBeast0o's user avatar
1 vote
1 answer
164 views

Integral involving product of dilogarithm and an exponential

I am interested in the integral \begin{equation} \int_0^1 \mathrm{Li}_2 (u) e^{-a^2 u} d u , ~~~~ (\ast) \end{equation} where $\mathrm{Li}_2$ is the dilogarithm. This integral arose in my attempt to ...
o0BlueBeast0o's user avatar
3 votes
1 answer
126 views

Sum of Fermi-Dirac integrals with opposite chemical potentials: closed form (Le Bellac eq. 1.13)

I am trying to reproduce the result of eq. (1.13) in Le Bellac's Thermal Field Theory book to compute the grand canonical potential of a gas of massless fermions: $$ Ω = - \frac{V T^4}{6 π^2} \int_0^\...
ShineOn's user avatar
  • 31
12 votes
2 answers
718 views

General expressions for $\mathcal{L}(n)=\int_{0}^{\infty}\operatorname{Ci}(x)^n\text{d}x$

Define $$\operatorname{Ci}(x)=-\int_{x}^{ \infty} \frac{\cos(y)}{y}\text{d}y.$$ It is easy to show $$ \mathcal{L}(1)=\int_{0}^{\infty}\operatorname{Ci}(x)\text{d}x=0 $$ and $$\mathcal{L}(2)=\int_{0}^{\...
Setness Ramesory's user avatar
10 votes
1 answer
790 views

A generalized "Rare" integral involving $\operatorname{Li}_3$

In my previous post, it can be shown that $$\int_{0}^{1} \frac{\operatorname{Li}_2(-x)- \operatorname{Li}_2(1-x)+\ln(x)\ln(1+x)+\pi x\ln(1+x) -\pi x\ln(x)}{1+x^2}\frac{\text{d}x}{\sqrt{1-x^2} } =\...
Setness Ramesory's user avatar
17 votes
1 answer
1k views

A rare integral involving $\operatorname{Li}_2$

A rare but interesting integral problem: $$\int_{0}^{1} \frac{\operatorname{Li}_2(-x)- \operatorname{Li}_2(1-x)+\ln(x)\ln(1+x)+\pi x\ln(1+x) -\pi x\ln(x)}{1+x^2}\frac{\text{d}x}{\sqrt{1-x^2} } =\...
Setness Ramesory's user avatar
8 votes
2 answers
494 views

Finding $\int_{1}^{\infty} \frac{1}{1+x^2} \frac{\operatorname{Li}_2\left ( \frac{1-x}{2} \right ) }{\pi^2+\ln^2\left(\frac{x-1}{2}\right)}\text{d}x$

Prove the integral $$\int_{1}^{\infty} \frac{1}{1+x^2} \frac{\operatorname{Li}_2\left ( \frac{1-x}{2} \right ) }{ \pi^2+\ln^2\left ( \frac{x-1}{2} \right ) }\text{d}x =\frac{96C\ln2+7\pi^3}{12(\pi^2+...
Setness Ramesory's user avatar
1 vote
0 answers
59 views

Difference of polylogarithms of complex conjugate arguments

I have the expression $$\tag{1} \operatorname{Li}_{1/2}(z)-\operatorname{Li}_{1/2}(z^*) $$ Where $\operatorname{Li}$ is the polylogarithm and $^*$ denotes complex conjugation. The expression is ...
Sal's user avatar
  • 4,817
3 votes
1 answer
106 views

Identity involving PolyLog functions

The following is a common identity between dilogarithms: $$ \text{Li}_2(y)+\text{Li}_2\left(\frac{y}{y-1}\right)+\frac{1}{2} \log ^2(1-y)=0\quad \text{with}\quad 0<y<1\,. $$ Similarly, with some ...
user12588's user avatar
  • 369
3 votes
0 answers
77 views

Asymptotics of Geometric Distribution Moments

It is known (e.g., see Wikipedia) that the $k$th moment of a Geometric distribution with success probability $p$ is $$\mathbb{E}\left[X^k\right] = \sum_{j = 0}^\infty j^k \cdot p(1-p)^j = p \cdot\text{...
paulinho's user avatar
  • 6,603
9 votes
1 answer
329 views

Different ways to evaluate $\sum_{n=1}^\infty\frac{H_nH_n^{(2)}}{(n+1)(n+2)(n+3)}$

The following question: How to compute the harmonic series $$\sum_{n=1}^\infty\frac{H_nH_n^{(2)}}{(n+1)(n+2)(n+3)}$$ where $H_n=\sum_{k=1}^n\frac{1}{k}$ and $H_n^{(2)}=\sum_{k=1}^n\frac{1}{k^2}$, was ...
Ali Shadhar's user avatar
  • 25.8k
0 votes
1 answer
78 views

How to solve a Non-algebraic equation?

While working with exponential growth and decay, I encountered a problem where I need to solve an equation involving logarithm. I could not separate or could not make it explicit. $y=\frac{\ln((1+r)(1-...
BDSub's user avatar
  • 180
6 votes
1 answer
494 views

Is the closed form of $\int_0^1 \frac{x\ln^a(1+x)}{1+x^2}dx$ known in the literature?

We know how hard these integrals $$\int_0^1 \frac{x\ln(1+x)}{1+x^2}dx; \int_0^1 \frac{x\ln^2(1+x)}{1+x^2}dx; \int_0^1 \frac{x\ln^3(1+x)}{1+x^2}dx; ...$$ can be. So I decided to come up with a ...
Ali Shadhar's user avatar
  • 25.8k
1 vote
0 answers
128 views

Conjectured closed form for ${\it {Li_2}} \left( 1-{\frac {\sqrt {2}}{2}}-i \left( 1-{\frac {\sqrt { 2}}{2}} \right) \right)$

With Maple i find this closed form: ${\it {Li_2}} \left( 1-{\frac {\sqrt {2}}{2}}-i \left( 1-{\frac {\sqrt { 2}}{2}} \right) \right)$=$-{\frac {{\pi}^{2}}{64}}-{\frac { \left( \ln \left( 1+\sqrt {2} ...
Dens's user avatar
  • 303
0 votes
1 answer
126 views

Evaluate $\int_{{\frac {\pi}{8}}}^{{\frac {7\,\pi}{8}}}\!{\frac {\ln \left( 1- \cos \left( t \right) \right) }{\sin \left( t \right) }}\,{\rm d}t$

I'm interested in this integral: $\int_{{\frac {\pi}{8}}}^{{\frac {7\,\pi}{8}}}\!{\frac {\ln \left( 1- \cos \left( t \right) \right) }{\sin \left( t \right) }}\,{\rm d}t$ I found this particular ...
Dens's user avatar
  • 303
8 votes
1 answer
342 views

Evaluating $\int_0^1\frac{\operatorname{Li}_2(x)\ln(1+x)}x\,dx$

Well, I've been trying to solve the following integral: \begin{equation*} \int_0^1\frac{\text{Li}_3(x)}{1+x}\mathrm dx, \end{equation*} where by integration by parts, making $u=\text{Li}_3(x)$ and $\...
lpb's user avatar
  • 481
8 votes
2 answers
428 views

Evaluating $\int_0^\infty\frac{\tan^{-1}av\cot^{-1}av}{1+v^2}\,dv$

The Weierstrass substitution stuck in my head after I used it to prove the rigidity of the braced hendecagon (and tridecagon). Thus I had another look at this question which I eventually answered in a ...
Parcly Taxel's user avatar
4 votes
2 answers
180 views

Prove $\int_0^1\frac{\text{Li}_2(-x^2)}{\sqrt{1-x^2}}\,dx=\pi\int_0^1\frac{\ln\left(\frac{2}{1+\sqrt{1+x}}\right)}{x}\,dx$

I managed here to prove $$\int_0^1\frac{\text{Li}_2(-x^2)}{\sqrt{1-x^2}}\,dx=\pi\int_0^1\frac{\ln\left(\frac{2}{1+\sqrt{1+x}}\right)}{x}\,dx$$ but what I did was converting the LHS integral to a ...
Ali Shadhar's user avatar
  • 25.8k
5 votes
1 answer
248 views

Closed form evaluation of a trigonometric integral in terms of polylogarithms

Define the function $\mathcal{K}:\mathbb{R}\times\mathbb{R}\times\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\times\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\rightarrow\mathbb{R}$ via the definite ...
David H's user avatar
  • 30.7k
6 votes
0 answers
362 views

Evaluate two integrals involving $\operatorname{Li}_3,\operatorname{Li}_4$

I need to evaluate $$\int_{1}^{\infty} \frac{\displaystyle{\operatorname{Re}\left ( \operatorname{Li}_3\left ( \frac{1+x}{2} \right ) \right ) \ln^2\left ( \frac{1+x}{2} \right ) }}{x(1+x^2)} \...
Setness Ramesory's user avatar
12 votes
3 answers
460 views

How to evaluate$J(k) = \int_{0}^{1} \frac{\ln^2x\ln\left ( \frac{1-x}{1+x} \right ) }{(x-1)^2-k^2(x+1)^2}\text{d}x$

I am trying evaluating this $$J(k) = \int_{0}^{1} \frac{\ln^2x\ln\left ( \frac{1-x}{1+x} \right ) }{(x-1)^2-k^2(x+1)^2}\ \text{d}x.$$ For $k=1$, there has $$J(1)=\frac{\pi^4}{96}.$$ Maybe $J(k)$ ...
Setness Ramesory's user avatar
3 votes
0 answers
291 views

Evaluate $\int_{1}^{\infty}\frac{\operatorname{Li}_3(-x)\ln(x-1)}{1+x^2}\text{d}x$

Using $$ \operatorname{Li}_3(-x) =-\frac{x}{2}\int_{0}^{1}\frac{\ln^2t}{1+tx} \text{d}t $$ It might be $$ -\frac{1}{2}\int_{0}^{1}\ln^2t \int_{1}^{\infty}\frac{x\ln(x-1)}{(1+tx)(1+x^2)}\text{d}x\text{...
Setness Ramesory's user avatar
7 votes
2 answers
338 views

evaluate $\int_{0}^{1}\frac{\text{Li}_2(\frac{x^2-1}{4})}{1-x^2}dx$

I came across this integral: $$\int_{0}^{1}\frac{\text{Li}_2(\frac{x^2-1}{4})}{1-x^2}dx=\frac{1}{2}\int_{-1}^{1}\frac{\text{Li}_2(\frac{x^2-1}{4})}{1-x^2}dx$$ One way to evaluate is to start with the ...
mathlover123's user avatar

15 30 50 per page
1 2 3
4
5
19