2
$\begingroup$

This question is related to the equivalence of formulas (1) and (2) below where formula (1) is from a post on the Harmonic Series Facebook group and formula (2) is based on evaluation of the integral using Mathematica. The right sides of formulas (2) and (3) below both seem to be equivalent numerically.


$$\int_0^{\frac{1}{2}}\frac{\text{Li}_2(-x)}{1-x}\,dx=-\text{Li}_3\left(-\frac{1}{2}\right)-\frac{13}{24}\zeta(3)\tag{1}$$

$$\int_0^{\frac{1}{2}}\frac{\text{Li}_2(-x)}{1-x}\,dx=-\text{Li}_3\left(\frac{1}{3}\right)+\text{Li}_3\left(\frac{2}{3}\right)+\text{Li}_3\left(-\frac{1}{3}\right)+\frac{1}{6} \left(6 \text{Li}_2\left(-\frac{1}{2}\right) (\log (2)-i \pi )+6 \text{Li}_2\left(\frac{2}{3}\right) \left(\log \left(\frac{9}{2}\right)+i \pi \right)+6 \text{Li}_2\left(-\frac{1}{3}\right) \log (3)-i \pi ^3+2 \log ^3(2)-3 i \pi \log ^2(2)+3 i \pi \log ^2(3)+4 \log ^2(3) \log \left(\frac{9}{8}\right)-\pi ^2 \log (3)\right)+\frac{5 \zeta (3)}{8}\tag{2}$$


Equating the right sides of formulas (1) and (2), rearranging terms, and simplifying a bit leads the following formula for $\zeta(3)$.


$$\zeta(3)=\frac{1}{7} \left(-6 \text{Li}_3\left(-\frac{1}{2}\right)+6 \text{Li}_3\left(\frac{1}{3}\right)-6 \text{Li}_3\left(\frac{2}{3}\right)-6 \text{Li}_3\left(-\frac{1}{3}\right)+\text{Li}_2\left(-\frac{1}{2}\right) (-\log (64)+6 i \pi )+6 \left(\text{Li}_2\left(\frac{1}{3}\right)-\text{Li}_2\left(-\frac{1}{3}\right)\right) \log (3)-\text{Li}_2\left(\frac{2}{3}\right) \left(12 \coth ^{-1}(5)+6 i \pi \right)+i \pi ^3-2 \log ^3(2)+3 i \pi \left(\log ^2(2)-\log ^2(3)\right)+\log ^2(3) \log \left(\frac{64}{9}\right)\right)\tag{3}$$


Question: Can formula (3) above be proven or simplified further?


There are a number of identities for the Dilogarithm $\text{Li}_2(z)$ and Trilogarithm $\text{Li}_3(z)$ functions, and I noticed some of the Trilogarithm identities involve $\zeta(3)$ terms, but formula (3) is as far as I've gotten at this point. I was hoping to at least reduce the number of $\text{Li}_k(z)$ terms in formula (3) above.


The formula

$$\int_0^{\frac{1}{2}}\frac{\text{Li}_2(-x)}{1-x}\,dx=-\frac{1}{6} \log^3 (2) -\frac{3}{2} \log (2) \log^2 (3) + \frac{4}{3} \log^3 (3) -\frac{\pi^2}{6} \log (6) + \log (3) \operatorname{Li}_2 \left(-\frac{1}{3}\right)+\log (9) \operatorname{Li}_2 \left(\frac{2}{3}\right)+\frac{1}{4} \operatorname{Li}_3 \left(\frac{1}{9}\right)-2\operatorname{Li}_3 \left( \frac{1}{3}\right)+\operatorname{Li}_3 \left(\frac{2}{3}\right)+\frac{5}{8}\zeta (3)\tag{4}$$


provided by @KStarGamer in a comment below seems to be equivalent numerically and leads to the simpler formula


$$\zeta (3)=-\frac{6 \text{Li}_3\left(-\frac{1}{2}\right)}{7}+\frac{12 \text{Li}_3\left(\frac{1}{3}\right)}{7}-\frac{6 \text{Li}_3\left(\frac{2}{3}\right)}{7}-\frac{3 \text{Li}_3\left(\frac{1}{9}\right)}{14}-\frac{6}{7} \text{Li}_2\left(\frac{2}{3}\right) \log (9)-\frac{6}{7} \text{Li}_2\left(-\frac{1}{3}\right) \log (3)+\frac{1}{7} \left(\log ^3(2)-8 \log ^3(3)+9 \log ^2(3) \log (2)+\pi ^2 \log (6)\right)\tag{5}$$


which is perhaps easier to investigate.

$\endgroup$
2
  • $\begingroup$ For what it’s worth, you can also get $I=-\frac{1}{6} \log^3 (2) -\frac{3}{2} \log (2) \log^2 (3) + \frac{4}{3} \log^3 (3) -\frac{\pi^2}{6} \log (6) + \log (3) \operatorname{Li}_2 \left(-\frac{1}{3}\right)+\log (9) \operatorname{Li}_2 \left(\frac{2}{3}\right)+\frac{1}{4} \operatorname{Li}_3 \left(\frac{1}{9}\right)-2\operatorname{Li}_3 \left( \frac{1}{3}\right)+\operatorname{Li}_3 \left(\frac{2}{3}\right)+\frac{5}{8}\zeta (3)$ $\endgroup$
    – KStar
    Commented Feb 10, 2022 at 22:14
  • $\begingroup$ @KStarGamer Yes your formula does seem to be equivalent numerically. $\endgroup$ Commented Feb 10, 2022 at 23:07

1 Answer 1

4
$\begingroup$

Using $\operatorname{Li}_2\left(1-z\right)+\operatorname{Li}_2\left(1-1/z\right)=-(\log^2z)/2$, \begin{align}\operatorname{Li}_2\left(1/4\right)+\operatorname{Li}_2\left(-1/3\right)&=-\frac{\log^2(3/4)}2\\\operatorname{Li}_2\left(2/3\right)+\operatorname{Li}_2\left(-2\right)&=-\frac{\log^23}2\end{align} so that $\displaystyle2\operatorname{Li}_2\left(2/3\right)+\operatorname{Li}_2\left(-1/3\right)=-\log^23-\frac{\log^2(3/4)}2-2\operatorname{Li}_2\left(-2\right)-\operatorname{Li}_2\left(1/4\right)$.

Using $\operatorname{Li}_2\left(z\right)+\operatorname{Li}_2\left(-z\right)=\operatorname{Li}_2\left(z^2\right)/2$ and $\operatorname{Li}_2\left(z\right)+\operatorname{Li}_2\left(1/z\right)=-\pi^2/6-\log^2(-z)/2$, \begin{align}2\operatorname{Li}_2\left(-2\right)+\operatorname{Li}_2\left(1/4\right)&=\operatorname{Li}_2\left(4\right)-2\operatorname{Li}_2\left(2\right)+\operatorname{Li}_2\left(1/4\right)\\&=-\frac{\pi^2}6-\frac{\log^2(-4)}2-\frac{\pi^2}2+2i\pi\log2,\end{align} Since $\operatorname{Li}_2\left(2\right)=\pi^2/4-i\pi\log2$, combining the identities above gives $$2\operatorname{Li}_2\left(2/3\right)+\operatorname{Li}_2\left(-1/3\right)=\frac{\pi^2}6-\frac32\log^23+2\log2\log3.$$ Thus it suffices to show that \begin{align}\zeta(3)&=\small\frac3{14}A-\frac67(2\operatorname{Li}_2\left(2/3\right)+\operatorname{Li}_2\left(-1/3\right))\log3+\frac{\log^32-8\log^33+9\log^23\log2+\pi^2\log6}7\\&=\frac3{14}A+\frac{\log^33-3\log^23\log2+\pi^2\log2+\log^23}7\end{align} where $A=-4\operatorname{Li}_3\left(-1/2\right)+8\operatorname{Li}_3\left(1/3\right)-4\operatorname{Li}_3\left(2/3\right)-\operatorname{Li}_3\left(1/9\right)$.

Using $\operatorname{Li}_3\left(z\right)+\operatorname{Li}_3\left(-z\right)=\operatorname{Li}_3\left(z^2\right)/4$, \begin{align}8\operatorname{Li}_3\left(1/3\right)-\operatorname{Li}_3\left(1/9\right)&=4\operatorname{Li}_3\left(1/3\right)-4\operatorname{Li}_3\left(-1/3\right)\end{align} so $A=4B$ where $B=-\operatorname{Li}_3\left(-1/2\right)+\operatorname{Li}_3\left(1/3\right)-\operatorname{Li}_3\left(2/3\right)-\operatorname{Li}_3\left(-1/3\right)$.

Using $\small\operatorname{Li}_3\left(z\right)+\operatorname{Li}_3\left(1-z\right)+\operatorname{Li}_3\left(1-1/z\right)=\zeta(3)+(\log^3z)/6+\pi^2(\log^2z)/6-\log^2z\log(1-z)/2$, \begin{align}\operatorname{Li}_3\left(2/3\right)+\operatorname{Li}_3\left(1/3\right)+\operatorname{Li}_3\left(-1/2\right)=\zeta(3)+\frac{\log^3(2/3)}6+\frac{\pi^2\log(2/3)}6+\frac{\log^2(2/3)\log3}2\end{align} and after several logarithmic manipulations, we have \begin{align}\zeta(3)&=\frac67B+\frac{\log^33-3\log^23\log2+\pi^2\log2+\log^23}7\\&=\frac67\left(2\operatorname{Li}_3\left(1/3\right)-\operatorname{Li}_3\left(-1/3\right)-\zeta(3)\right)+\frac{\pi^2\log3-\log^33}7\end{align} or equivalently, $$13\zeta(3)=6(2\operatorname{Li}_3\left(1/3\right)-\operatorname{Li}_3\left(-1/3\right))+\pi^2\log3-\log^33$$ which has a simple derivation.

$\endgroup$

You must log in to answer this question.

Not the answer you're looking for? Browse other questions tagged .