Skip to main content

Questions tagged [complex-geometry]

Complex geometry is the study of complex manifolds, complex algebraic varieties, complex analytic spaces, and, by extension, of almost complex structures. It is a part of differential geometry, algebraic geometry and analytic geometry.

1 vote
0 answers
51 views

Enriques-Kodaira classification of minimal resolution of surface with quotient singularities

Let $X$ be a normal projective complex surface with at worst quotient singularities. Let $\bar{X}\to X$ be the minimal resolution. Further assume that $b_2(X)=1$ and $b_1(X)=b_3(X)=0$. Since quotient ...
blancket's user avatar
  • 189
3 votes
0 answers
166 views

$H^2(X,T_X)=0$ implies the Frölicher spectral sequence degenerates at $E_1$?

Let $X$ be a compact complex manifold, if $X$ satisfies $H^2(X,T_X)=0$, then it is well-known that the Kuranishi space of $X$ is smooth by Kodaira and Spencer's deformation theory. On the other hand, ...
Tom's user avatar
  • 449
0 votes
0 answers
96 views

Analogue of Bochner's formula for compact Kähler manifolds

Let $X$ be a compact Kähler manifold and $(E,h)$ a Hermitian vector bundle over $X$. Suppose that $\nabla$ is a Hermitian-Einstein connection on $E$, that is $$i\Lambda F_\nabla = \lambda\text{id}_E.$$...
Nikolai's user avatar
  • 93
1 vote
0 answers
159 views

How to "eliminate" the log pole of a logarithmic $(p,q)$-form?

Let $X$ be a compact complex manifold, and $D=\sum_{i=1}^{r} D_i$ be a simple normal crossing divisor on $X$. Let $\alpha$ be a logarithmic $(p,q)$-form, namely, on an open subset $U$, we can write $$\...
Invariance's user avatar
2 votes
1 answer
120 views

Branched covering maps between Riemann surfaces

What is an example of a branched covering map between Riemann surfaces of infinite degree? i.e. something like a branched version of the exponential map $exp: \mathbb{C} \to \mathbb{C}^*$. Thanks!
cata's user avatar
  • 357
4 votes
0 answers
57 views

Isometry group of the Fubini-Study metric on complex projective spaces

Let $(\mathbb CP^n,g_{FS})$ be the complex projective space equipped with the standard Fubini-Study metric. What is the Riemannian isometry group of $(\mathbb CP^n,g_{FS})$? It seems to me that its ...
Adterram's user avatar
  • 1,401
4 votes
1 answer
174 views

Locality of Kähler-Ricci flow

Let $(M,I, \omega)$ be a compact Kähler manifold with $c_1(M)=0$. Denote by $\operatorname{Ric}^{1,1}(\omega)$ the Ricci (1,1)-form, that is, the curvature of the canonical bundle. It is known ("...
Misha Verbitsky's user avatar
3 votes
0 answers
80 views

The discriminant of a holomorphic vector bundle

Let $M$ be a complex manifold and $E$ a holomorphic vector bundle over $M$. The discriminant $\Delta(E)$ of $E$ is then defined to be $$\Delta(E)=c_2(\text{End}(E))=2rc_1(E)-(r-1)c^2_1(E).$$ This ...
Jonathan's user avatar
  • 131
1 vote
0 answers
54 views

Seeking for bridges to connect K-stability and GIT-stability

We consider the variety $\Sigma_{m}$ := {($p$, $X$) : $X$ is a degree $n$ + 1 hypersurface over $\mathbb{C}$ with mult$_{p}(X) \geq m$} $\subseteq$ $\mathbb{P}$$^{n}$ $\times$ $\mathbb{P}$$^{N}$, ...
RedLH's user avatar
  • 41
1 vote
0 answers
74 views

Birational deformations of holomorphic symplectic manifolds

Let $X$ and $X'$ be birational holomorphic symplectic manifolds. Then the birational morphism between them identifies $H^2(X)$ with $H^2(Y)$. The period space of $X$ is defined to be a subset of $\...
fgh's user avatar
  • 153
0 votes
0 answers
66 views

Details of the proof of the inequality $ \int_{X}\left(2 r \mathrm{c}_{2}(E)-(r-1) \mathrm{c}_{1}^{2}(E)\right) \wedge \omega^{n-2} \geq 0.$

I'm trying to make sense of the following proof. Let $E$ be a holomorphic vector bundle of rank $r$ on a compact hermitian manifold $(X, g)$. If $E$ admits an Hermite-Einstein structure then $$ \int_{...
Nikolai's user avatar
  • 93
0 votes
0 answers
123 views

Function of several complex variables with prescribed zeros

I accidentally stumbled upon a problem of complex analysis in several variables, and I have a hard time understanding what I read, it might be related to the Cousin II problem but I cannot say for ...
kaleidoscop's user avatar
  • 1,332
5 votes
0 answers
234 views

Does the Poincaré lemma (Dolbeault–Grothendieck lemma) still hold on singular complex space?

Let $X$ be a complex manifold, then we have the Poincaré lemma (or say, Dolbeault-Grothendieck lemma) (locally) on $X$, whose formulation is as follows: ( $\bar{\partial}$-Poincaré lemma) If $\...
Lelong  Wang's user avatar
3 votes
1 answer
192 views

Definition for the Chern–Weil formula?

I'm reading Yang–Mills connections and Einstein–Hermitian metrics by Itoh and Nakajima. On definition 1.8 they define a notion for an Einstein–Hermitian connection $A$ by $$K_A = \lambda(E)\mathrm{id}...
Nikolai's user avatar
  • 93
4 votes
0 answers
189 views

Is there Riemann-Roch without denominators for complex manifolds?

Let $X \subset Y$ be an inclusion of compact complex (possibly Kähler) manifolds. I'm wondering if "Riemann-Roch without Denominators" [1, Thm 15.3] holds in that situation. The statement is ...
red_trumpet's user avatar
  • 1,111

15 30 50 per page
1
2 3 4 5
213