Skip to main content

All Questions

0 votes
0 answers
44 views

Induction proof for product of $a^x$ is less than or equal to the sum of $x\times a$

So this type of problem has me stuck in proving some relation. I assumed to use induction but I am stuck at a certain step and cannot understand if there is a trick or perhaps my idea is just wrong: ...
thewhale's user avatar
0 votes
0 answers
44 views

Inequality with Products and Sums

I need help to find a proof for the following inquality. Assuming that $ 0 \leq c_i \leq 1 $ and $ 0 \leq d_i \leq 1 $, show that $$ \prod_{i=1}^N (c_i + d_i - c_i d_i) \geq \prod_{i=1}^N c_i + \prod_{...
Duns's user avatar
  • 778
2 votes
1 answer
84 views

Proving an inequality consisting of sums and products

I have a tricky inequality (related to some previous ones that I posted) which I am yet again stuck trying to solve. I have confirmed that it is true through simulation (at least up until overflow ...
David's user avatar
  • 183
2 votes
0 answers
64 views

How to prove the following inequality with complete induction?

Let $n \in \mathbb{N}$, and let $a_1, ... , a_n > 0.$ Show that: I got the hint that we have to use this induction step for the induction proof: And thats what I got so far in the Induction step ...
Johnny C.'s user avatar
6 votes
0 answers
97 views

Prove that if $x_{1}x_{2}...x_{n}=1$ then $\frac{1}{1+x_{1}+x_{1}x_{2}}+...+\frac{1}{1+x_{n-1}+x_{n-1}x_{n}}+\frac{1}{1 +x_{n}+x_{n}x_{1}}\ge 1$ [duplicate]

Prove that if $x_{1}x_{2}...x_{n}=1$ then $\frac{1}{1+x_{1}+x_{1}x_{2}}+...+\frac{1}{1+x_{n-1}+x_{n-1}x_{n}}+\frac{1}{1 +x_{n}+x_{n}x_{1}}\ge 1$. $x_{1},x_{2},...,x_{n}$ are positive real numbers, and ...
nowepas's user avatar
  • 288
1 vote
2 answers
125 views

Mathematicals inequalities

For $$x,y,z>0 $$ Prove that $$(2xyz)^2 \ge (x^3+y^3+z^3+xyz)(x+y-z)(y+z-x)(z+x-y)$$ I have tried a famous inequalities: $$(x+y-z)(y+z-x)(z+x-y) \le xyz$$ So the problem is: $$3xyz \ge x^3+y^3+z^3$$ ...
Kazama's user avatar
  • 21
4 votes
3 answers
104 views

$Q\le \prod \frac{5+2x}{1+x}\le P$ find $P,Q$

if $x,y,z,$ are positives and $x+y+z=1$ and $$Q\le \prod_{cyc} \frac{5+2x}{1+x}\le P$$ find maximum value of $Q$ and minimum value of $P$ This is actually a question made up myself ,so i don,t know ...
Albus Dumbledore's user avatar
1 vote
1 answer
68 views

Proving $\sum_{i=1}^{n} \frac{a_{i}^2+a_{i+1}a_{i+2}}{a_{i}(a_{i+1}+a_{i+2})} \geq n.$

Given $a_1,a_2,...,a_n>0$, ($n\geq3, n \in \mathbb{N}$), prove that $$\frac{a_{1}^2+a_{2}a_{3}}{a_{1}(a_{2}+a_{3})}+\frac{a_{2}^2+a_{3}a_{4}}{a_{2}(a_{3}+a_{4})}+...+\frac{a_{n-1}^2+a_{n}a_{1}}{a_{...
Dave Robin's user avatar
3 votes
2 answers
178 views

Prove that $\frac1{a(1+b)}+\frac1{b(1+c)}+\frac1{c(1+a)}\ge\frac3{1+abc}$

I tried doing it with CS-Engel to get $$ \frac{1}{a(1+b)}+\frac{1}{b(1+c)}+\frac{1}{c(1+a)} \geq \frac{9}{a+b+c+ a b+b c+a c} $$ I thought that maybe proof that $$ \frac{1}{a+b+c+a b+b c+a c} \geq \...
Albert Wijaya's user avatar
3 votes
2 answers
81 views

$AM-GM$-ish inequality

Suppose $x_0, \cdots, x_n$ are positive reals. Suppose that: $$\sum_{i = 0}^n \frac{1}{1+x_i} \leq 1$$ Then show that: $$\prod_{i=0}^{n} x_i \geq n^{n+1} $$ I got to this problem by rewriting problem ...
mtheorylord's user avatar
  • 4,284
5 votes
3 answers
195 views

Prove that $\frac{\sqrt[n]{\prod_{k = 1}^nx_n}}{m} \ge n - 1$ where $\sum_{k = 1}^n\frac{1}{x_k + m} = \frac{1}{m}$.

Given positives $x_1, x_2, \cdots, x_{n - 1}, x_n$ such that $$\large \sum_{k = 1}^n\frac{1}{x_k + m} = \frac{1}{m}$$. Prove that $$\large \frac{\displaystyle \sqrt[n]{\prod_{k = 1}^nx_n}}{m} \ge n - ...
Lê Thành Đạt's user avatar
4 votes
2 answers
272 views

Sum of positive elements divided by their "weighted" product - inequality

I have following expression, $$ \frac{\sum_{i=1}^n x_i}{\prod_{i=1}^nx_i^{p_i}} $$ where $p_i$s satisfy $\sum p_i = 1$ and $p_i \in [0,1]$ and $x_i\geq0$, $\forall i \in 1\dots n$. I think that ...
Michael Mark's user avatar
1 vote
0 answers
47 views

Where has this inequality come from?

Within the paper PRIMES is in P the following inequality can be found (on page 4, in the proof of Lemma 4.3) $$ n^{\lfloor \log(B) \rfloor} \prod_{i=1}^{\lfloor \log^2(n) \rfloor} (n^i - 1) \hspace{...
M Smith's user avatar
  • 2,737
1 vote
1 answer
63 views

Prove $x^{y+1}z+y^{z+1}x+z^{x+1}y\geq x^2y^2z^2$

Let $x>1$, $y>1$ and $z>1$ be such that $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$. Prove that: $$x^{y+1}z+y^{z+1}x+z^{x+1}y\geq x^2y^2z^2.$$ When $x=y=z=3$, both sides are equal to $3^6$. ...
pi66's user avatar
  • 7,194
4 votes
1 answer
3k views

Proof of Inequality involving sum and product without induction

How could you prove these inequalities wihout induction:($a_k$ are non-negative) 1)$\prod_{k=1}^n(1+a_k)\ge1+\sum_{k=1}^n a_k$ 2)$\prod_{k=1}^n(1+a_k)\le1+\frac{\sum_{k=1}^na_k}{1!}+\ldots+\frac{(\...
vidyarthi's user avatar
  • 7,085

15 30 50 per page