Skip to main content

All Questions

12 votes
1 answer
885 views

Showing $\sum\limits^N_{n=1}\left(\prod\limits_{i=1}^n b_i \right)^\frac1{n}\le\sum\limits^N_{n=1}\left(\prod\limits_{i=1}^n a_i \right)^\frac1{n}$?

If $a_1\ge a_2 \ge a_3 \ldots $ and if $b_1,b_2,b_3\ldots$ is any rearrangement of the sequence $a_1,a_2,a_3\ldots$ then for each $N=1,2,3\ldots$ one has $$\sum^N_{n=1}\left(\prod_{i=1}^n b_i \right)^...
Henry B.'s user avatar
  • 2,048
6 votes
0 answers
97 views

Prove that if $x_{1}x_{2}...x_{n}=1$ then $\frac{1}{1+x_{1}+x_{1}x_{2}}+...+\frac{1}{1+x_{n-1}+x_{n-1}x_{n}}+\frac{1}{1 +x_{n}+x_{n}x_{1}}\ge 1$ [duplicate]

Prove that if $x_{1}x_{2}...x_{n}=1$ then $\frac{1}{1+x_{1}+x_{1}x_{2}}+...+\frac{1}{1+x_{n-1}+x_{n-1}x_{n}}+\frac{1}{1 +x_{n}+x_{n}x_{1}}\ge 1$. $x_{1},x_{2},...,x_{n}$ are positive real numbers, and ...
nowepas's user avatar
  • 288
5 votes
3 answers
195 views

Prove that $\frac{\sqrt[n]{\prod_{k = 1}^nx_n}}{m} \ge n - 1$ where $\sum_{k = 1}^n\frac{1}{x_k + m} = \frac{1}{m}$.

Given positives $x_1, x_2, \cdots, x_{n - 1}, x_n$ such that $$\large \sum_{k = 1}^n\frac{1}{x_k + m} = \frac{1}{m}$$. Prove that $$\large \frac{\displaystyle \sqrt[n]{\prod_{k = 1}^nx_n}}{m} \ge n - ...
Lê Thành Đạt's user avatar
4 votes
2 answers
272 views

Sum of positive elements divided by their "weighted" product - inequality

I have following expression, $$ \frac{\sum_{i=1}^n x_i}{\prod_{i=1}^nx_i^{p_i}} $$ where $p_i$s satisfy $\sum p_i = 1$ and $p_i \in [0,1]$ and $x_i\geq0$, $\forall i \in 1\dots n$. I think that ...
Michael Mark's user avatar
4 votes
3 answers
104 views

$Q\le \prod \frac{5+2x}{1+x}\le P$ find $P,Q$

if $x,y,z,$ are positives and $x+y+z=1$ and $$Q\le \prod_{cyc} \frac{5+2x}{1+x}\le P$$ find maximum value of $Q$ and minimum value of $P$ This is actually a question made up myself ,so i don,t know ...
Albus Dumbledore's user avatar
4 votes
2 answers
637 views

Prove $\prod_{k=1}^n(1+a_k)\leq1+2\sum_{k=1}^n a_k$

I want to prove $$\prod_{k=1}^n(1+a_k)\leq1+2\sum_{k=1}^n a_k$$ if $\sum_{k=1}^n a_k\leq1$ and $a_k\in[0,+\infty)$ I have no idea where to start, any advice would be greatly appreciated!
ntm's user avatar
  • 143
4 votes
1 answer
3k views

Proof of Inequality involving sum and product without induction

How could you prove these inequalities wihout induction:($a_k$ are non-negative) 1)$\prod_{k=1}^n(1+a_k)\ge1+\sum_{k=1}^n a_k$ 2)$\prod_{k=1}^n(1+a_k)\le1+\frac{\sum_{k=1}^na_k}{1!}+\ldots+\frac{(\...
vidyarthi's user avatar
  • 7,085
3 votes
2 answers
178 views

Prove that $\frac1{a(1+b)}+\frac1{b(1+c)}+\frac1{c(1+a)}\ge\frac3{1+abc}$

I tried doing it with CS-Engel to get $$ \frac{1}{a(1+b)}+\frac{1}{b(1+c)}+\frac{1}{c(1+a)} \geq \frac{9}{a+b+c+ a b+b c+a c} $$ I thought that maybe proof that $$ \frac{1}{a+b+c+a b+b c+a c} \geq \...
Albert Wijaya's user avatar
3 votes
2 answers
81 views

$AM-GM$-ish inequality

Suppose $x_0, \cdots, x_n$ are positive reals. Suppose that: $$\sum_{i = 0}^n \frac{1}{1+x_i} \leq 1$$ Then show that: $$\prod_{i=0}^{n} x_i \geq n^{n+1} $$ I got to this problem by rewriting problem ...
mtheorylord's user avatar
  • 4,284
2 votes
1 answer
84 views

Proving an inequality consisting of sums and products

I have a tricky inequality (related to some previous ones that I posted) which I am yet again stuck trying to solve. I have confirmed that it is true through simulation (at least up until overflow ...
David's user avatar
  • 183
2 votes
0 answers
64 views

How to prove the following inequality with complete induction?

Let $n \in \mathbb{N}$, and let $a_1, ... , a_n > 0.$ Show that: I got the hint that we have to use this induction step for the induction proof: And thats what I got so far in the Induction step ...
Johnny C.'s user avatar
1 vote
3 answers
89 views

Prove that $\prod_{n \in \mathbb{N}}{(1-a_n)} \geq 1 - \sum_{n \in \mathbb{N}}{a_n}$

The following proof is obtained from this paper. My question is how to obtain the inequality. My guess is because of the following inequality: $$\prod_{n \in \mathbb{N}}{(1-a_n)} \geq 1 - \sum_{n ...
Idonknow's user avatar
  • 15.9k
1 vote
1 answer
63 views

Prove $x^{y+1}z+y^{z+1}x+z^{x+1}y\geq x^2y^2z^2$

Let $x>1$, $y>1$ and $z>1$ be such that $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$. Prove that: $$x^{y+1}z+y^{z+1}x+z^{x+1}y\geq x^2y^2z^2.$$ When $x=y=z=3$, both sides are equal to $3^6$. ...
pi66's user avatar
  • 7,194
1 vote
1 answer
224 views

Prove $1 + \sum_{i=0}^n(\frac1{x_i}\prod_{j\neq i}(1+\frac1{x_j-x_i}))=\prod_{i=0}^n(1+\frac1{x_i})$

Prove the identity $$1 + \sum_{i=0}^n \left(\frac1{x_i}\prod_{j\neq i} \left(1+\frac1{x_j-x_i} \right) \right)=\prod_{i=0}^n \left(1+\frac1{x_i} \right)$$ and hence deduce the inequality in Problem ...
Christmas Bunny's user avatar
1 vote
2 answers
125 views

Mathematicals inequalities

For $$x,y,z>0 $$ Prove that $$(2xyz)^2 \ge (x^3+y^3+z^3+xyz)(x+y-z)(y+z-x)(z+x-y)$$ I have tried a famous inequalities: $$(x+y-z)(y+z-x)(z+x-y) \le xyz$$ So the problem is: $$3xyz \ge x^3+y^3+z^3$$ ...
Kazama's user avatar
  • 21

15 30 50 per page