Skip to main content

All Questions

3 votes
3 answers
386 views

$\operatorname{Li}_{2} \left(\frac{1}{e^{\pi}} \right)$ as a limit of a sum

Working on the same lines as This/This and This I got the following expression for the Dilogarithm $\operatorname{Li}_{2} \left(\frac{1}{e^{\pi}} \right)$: $$\operatorname{Li}_{2} \left(\frac{1}{e^{\...
Srini's user avatar
  • 862
0 votes
0 answers
96 views

$\operatorname{Li}_{2} \left(\frac12 \right)$ vs $\operatorname{Li}_{2} \left(-\frac12 \right)$ : some long summation expressions

Throughout this post, $\operatorname{Li}_{2}(x)$ refers to Dilogarithm. While playing with some Fourier Transforms, I came up with the following expressions: $$2 \operatorname{Li}_{2}\left(\frac12 \...
Srini's user avatar
  • 862
4 votes
0 answers
125 views

Definite integral involving exponential and logarith function

Working with Dilogarimth function, we get the following definite integral $$\int_0^{\infty}\frac{t^2\,\ln^{n}(t)}{(1-e^{x\,t})(1-e^{y\,t})}\,dt$$ with $n=1,2,3,...$ and $x,y>0$. I wonder if is ...
popi's user avatar
  • 1,774
1 vote
0 answers
67 views

How to integrate $\int_0^\frac{1}{2}\frac{\ln(1+x)}{x}\ln\left(\frac{1}{x}-1\right)\mathrm{d}x$ [duplicate]

Question; how to integrate $$\int_0^\frac{1}{2}\frac{\ln(1+x)}{x}\ln\left(\frac{1}{x}-1\right)\mathrm{d}x$$ here is my attempt to solve the integral \begin{align} I&=\int_0^\frac{1}{2}\frac{\ln(1+...
Mods And Staff Are Not Fair's user avatar
10 votes
0 answers
259 views

Evaluate $\int_{0}^{1} \operatorname{Li}_3\left [ \left ( \frac{x(1-x)}{1+x} \right ) ^2 \right ] \text{d}x$

Possibly evaluate the integral? $$ \int_{0}^{1} \operatorname{Li}_3\left [ \left ( \frac{x(1-x)}{1+x} \right ) ^2 \right ] \text{d}x. $$ I came across this when playing with Legendre polynomials, ...
Setness Ramesory's user avatar
1 vote
0 answers
51 views

Polylogarithmically solving $\int\frac{\log(a_1x+b_1)\cdots\log(a_nx+b_n)}{px+q}\,dx$

I am now trying a direct approach to solving my question about $$\int_0^\infty\frac{\arctan a_1x\arctan a_2x\dots\arctan a_nx}{1+x^2}\,dx$$ where the $a_i$ are all positive. Note that the $\arctan$s ...
Parcly Taxel's user avatar
8 votes
1 answer
285 views

Evaluate $\int_0^\infty\frac{dx}{1+x^2}\prod_i\arctan a_ix$ (product of arctangents and Lorentzian)

Define $$I(a_1,\dots,a_n)=\int_0^\infty\frac{dx}{1+x^2}\prod_{i=1}^n\arctan a_ix$$ with $a_i>0$. By this answer $\newcommand{Li}{\operatorname{Li}_2}$ $$I(a,b)= \frac\pi4\left(\frac{\pi^2}6 -\Li\...
Parcly Taxel's user avatar
0 votes
0 answers
50 views

How to integrate $\frac{x^N\log(1+x)}{\sqrt{x^2+x_1^2}\sqrt{x^2+x_2^2}}$?

I am trying to compute the integral $$\int_{x_0}^{1}\frac{x^N\log(1+x)}{\sqrt{x^2+x_1^2}\sqrt{x^2+x_2^2}}\text{d}x$$ where $x_0, x_1$ and $x_2$ are related to some parameters $\kappa_\pm$ by $$x_0=\...
Anders W's user avatar
4 votes
0 answers
124 views

Is it possible to evaluate this integral? If not, is it possible to determine whether the result is an elliptic function or not?

I am trying to evaluate the integral $$F(x,y) = \int_0^1 du_1\, \int_0^{1-u_1} du_2\, \frac{\log f(x,y|u_1,u_2)}{f(x,y|u_1,u_2)}\,, \tag{1}$$ with $$f(x,y|u_1,u_2) := u_1(1-u_1)+y\, u_2(1-u_2) + (x-y-...
Pxx's user avatar
  • 697
3 votes
0 answers
186 views

how to find closed form for $\int_0^1 \frac{x}{x^2+1} \left(\ln(1-x) \right)^{n-1}dx$?

here in my answer I got real part for polylogarithm function at $1+i$ for natural $n$ $$ \Re\left(\text{Li}_n(1+i)\right)=\left(\frac{-1}{4}\right)^{n+1}A_n-B_n $$ where $$ B_n=\sum_{k=0}^{\lfloor\...
Faoler's user avatar
  • 1,647
4 votes
3 answers
136 views

I need help evaluating the integral $\int_{-\infty}^{\infty} \frac{\log(1+e^{-z})}{1+e^{-z}}dz$

I was playing around with the integral: $$\int_{-\infty}^{\infty} \frac{\log(1+e^{-z})}{1+e^{-z}}dz$$ I couldn't find a way of solving it, but I used WolframAlpha to find that the integral evaluated ...
Abdullah's user avatar
21 votes
1 answer
1k views

Solution of a meme integral: $\int \frac{x \sin(x)}{1+\cos(x)^2}\mathrm{d}x$

Context A few days ago I saw a meme published on a mathematics page in which they joked about the fact that $$\int\frac{x\sin(x)}{1+\cos(x)^2}\mathrm{d}x$$ was very long (and they put a screen shot of ...
Math Attack's user avatar
2 votes
2 answers
154 views

$\displaystyle\int_{0}^{\frac{\pi}{2}}\ln(1+\alpha^N\tan(x)^N)\mathrm{d}x\quad$ where $N\in\mathbb{N}$

$\color{red}{\textrm{Context}}$ I wanted to calculate the following integrals $$\displaystyle\int_{0}^{\frac{\pi}{2}}\ln(1+\tan(x)^N)\mathrm{d}x\qquad\text{for }N\in\mathbb{N}$$ and I used the Feymann ...
Math Attack's user avatar
0 votes
3 answers
82 views

Evaluating an integral from 0 to 1 with a parameter, (and a dilogarithm)

So I need to evaluate the following integral (in terms of a): $$\int_{0}^{1} \frac{\ln{|1-\frac{y}{a}|}}{y} dy$$ Till now I have tried u-sub ($u = \ln{|1-\frac{y}{a}|}$, $u=\frac{y}{a}$) and ...
Kraken's user avatar
  • 27
11 votes
0 answers
255 views

Solve the integral $\int_0^1 \frac{\ln^2(x+1)-\ln\left(\frac{2x}{x^2+1}\right)\ln x+\ln^2\left(\frac{x}{x+1}\right)}{x^2+1} dx$

I tried to solve this integral and got it, I showed firstly $$\int_0^1 \frac{\ln^2(x+1)+\ln^2\left(\frac{x}{x+1}\right)}{x^2+1} dx=2\Im\left[\text{Li}_3(1+i) \right] $$ and for other integral $$\int_0^...
Faoler's user avatar
  • 1,647
4 votes
0 answers
112 views

Calculate an integral involving polylog functions

Im my recent answer https://math.stackexchange.com/a/4777055/198592 I found numerically that the following integral has a very simple result $$i = \int_0^1 \frac{\text{Li}_2\left(\frac{i\; t}{\sqrt{1-...
Dr. Wolfgang Hintze's user avatar
8 votes
3 answers
1k views

Prove $\int_{0}^{1}\frac1k K(k)\ln\left[\frac{\left(1+k \right)^3}{1-k} \right]\text{d}k=\frac{\pi^3}{4}$

Is it possible to show $$ \int_{0}^{1}\frac{K(k)\ln\left[\tfrac{\left ( 1+k \right)^3}{1-k} \right] }{k} \text{d}k=\frac{\pi^3}{4}\;\;? $$ where $K(k)$ is the complete elliptic integral of the first ...
Setness Ramesory's user avatar
1 vote
0 answers
69 views

Polylogarithm further generalized

Here I proposed a generalized formula for the polylogarithm. However, because of a slight mistake towards the end, visible prior to the edit, I was unaware that it yields just a result of an integral ...
Artur Wiadrowski's user avatar
5 votes
1 answer
193 views

Evaluating $\int_{0}^{1}\mathrm{d}x\,\frac{\operatorname{arsinh}{(ax)}\operatorname{arsinh}{(bx)}}{x}$ in terms of polylogarithms

Define the function $\mathcal{I}:\mathbb{R}^{2}\rightarrow\mathbb{R}$ by the definite integral $$\mathcal{I}{\left(a,b\right)}:=\int_{0}^{1}\mathrm{d}x\,\frac{\operatorname{arsinh}{\left(ax\right)}\...
David H's user avatar
  • 30.7k
2 votes
0 answers
85 views

Complex polylogarithm/Clausen function/Fourier series

Sorry for the confusing title but I'm having a problem and I can phrase the question in multiple different ways. I was calculating with WolframAlpha $$\int \text{atanh}(\cos(x))\mathrm{d}x= i \text{Li}...
Math Attack's user avatar
2 votes
0 answers
68 views

Evaluating $\int\frac{\log(x+a)}{x}\,dx$ in terms of dilogarithms

As per the title, I evaluated $$\int\frac{\log(x+a)}{x}\,dx$$ And wanted to make sure my solution is correct, and if not, where I went wrong in my process. Here is my work. $$\int\frac{\log(x+a)}{x}\,...
Person's user avatar
  • 1,123
6 votes
2 answers
326 views

How to show $\int_0^1\frac{\operatorname{Li}_2\left(\frac{1+x^2}{2}\right)}{1+x^2}dx=\ln(2)G$

I am trying to prove that $$\int_0^1\frac{\operatorname{Li}_2\left(\frac{1+x^2}{2}\right)}{1+x^2}dx=\ln(2)G,$$ where $G$ is the Catalan constant and $\operatorname{Li}_2(x)$ is the dilogarithm ...
Ali Shadhar's user avatar
  • 25.8k
5 votes
1 answer
288 views

Closed forms of the integral $ \int_0^1 \frac{\mathrm{Li}_n(x)}{(1+x)^n} d x $

(This is related to this question). How would one find the closed forms the integral $$ \int_0^1 \frac{\mathrm{Li}_n(x)}{(1+x)^n} d x? $$ I tried using Nielsen Generalized Polylogarithm as mentioned ...
Anomaly's user avatar
  • 107
1 vote
1 answer
122 views

Show that $\int_0^1 \frac{Li_{1 - 2m}(1 - 1/x)}{x} dx = 0$.

I would like to show that,for $m \geq 2$, $$I_m := \int_0^1 \frac{\operatorname{Li}_{1 - 2m}(1 - 1/x)}{x} dx = 0$$ where $\operatorname{Li}_{1 - 2m}$ is the $1-2m$ polylogarithm (https://en.wikipedia....
jvc's user avatar
  • 2,073
2 votes
1 answer
259 views

Generalized formula for the polylogarithm

Some time ago, I discovered the formula for repeated application of $z\frac{d}{dz}$ here. Recently, I thought about taking the function to which this would be applied to be the integral representation ...
Artur Wiadrowski's user avatar
5 votes
3 answers
258 views

How to find the exact value of $\sum_{n=1}^{\infty} \frac{\sin \left(\frac{n \pi}{4}\right)}{n^2 \cdot 2^{\frac{n}{2}}} $?

Once I met the identity $$ \boxed{S_0=\sum_{n=1}^{\infty} \frac{\sin \left(\frac{n \pi}{4}\right)}{2^{\frac{n}{2}}}=1}, $$ I first tried to prove it by $e^{xi}=\cos x+i\sin x$. $$ \begin{aligned} \...
Lai's user avatar
  • 22.3k
2 votes
1 answer
174 views

Calculate the integral of the given polylogarithm function? $\int_0^1\frac{\operatorname{Li}_ 4(x)}{1+x}dx=?$ [closed]

$$\int_0^1 \frac{\operatorname{Li}_2(-x)\operatorname{Li}_2(x)}{x}\,\mathrm dx=?$$ where $$\operatorname{Li}_2(-x)=\sum_{k=1}^{\infty}\frac{(-x)^k}{k^2}$$ for $$|x|>1$$ actually my goal is to edit ...
merve kaya's user avatar
3 votes
1 answer
244 views

How to solve $\int\frac{x\arctan x}{x^4+1}dx$ in a practical way

I need to evaluate the following indefinite integral for some other definite integral $$\int\frac{x\arctan x}{x^4+1}dx$$ I found that $$\int_o^\infty\arctan{(e^{-x})}\arctan{(e^{-2x})}dx=\frac{\pi G}{...
phi-rate's user avatar
  • 2,370
21 votes
3 answers
2k views

Evaluate $\int_0^1\arcsin^2(\frac{\sqrt{-x}}{2}) (\log^3 x) (\frac{8}{1+x}+\frac{1}{x}) \, dx$

Here is an interesting integral, which is equivalent to the title $$\tag{1}\int_0^1 \log ^2\left(\sqrt{\frac{x}{4}+1}-\sqrt{\frac{x}{4}}\right) (\log ^3x) \left(\frac{8}{1+x}+\frac{1}{x}\right) \, dx =...
pisco's user avatar
  • 19.1k
1 vote
0 answers
54 views

Dilogarithm Function on Negative Domain

I'm not that good with math, but somehow ended up solving for $ \int { \ln { (\cosh x) } } \cdot dx $. This has led me to the answer described here. In my case, I need a solution for x > 1, ...
Silver Flash's user avatar
36 votes
8 answers
2k views

How to Evaluate the Integral? $\int_{0}^{1}\frac{\ln\left( \frac{x+1}{2x^2} \right)}{\sqrt{x^2+2x}}dx=\frac{\pi^2}{2}$

I am trying to find a closed form for $$ \int_{0}^{1}\ln\left(\frac{x + 1}{2x^{2}}\right) {{\rm d}x \over \,\sqrt{\,{x^{2} + 2x}\,}\,}. $$ I have done trig substitution and it results in $$ \int_{0}^{...
mike's user avatar
  • 667
3 votes
0 answers
316 views

Two tough integrals with logarithms and polylogarithms

The following two integrals are given in (Almost) Impossible Integrals, Sums, and Series (see Sect. $\textbf{1.55}$, page $35$), $$i) \int_0^{\pi/2} \cot (x) \log (\cos (x)) \log ^2(\sin (x)) \...
user97357329's user avatar
  • 5,495
4 votes
1 answer
257 views

Find closed-form of: $\int_{0}^{1}\frac{x\log^{3}{(x+1)}}{x^2+1}dx$

I found this integral: $$\int_{0}^{1}\frac{x\log^{3}{(x+1)}}{x^2+1}dx$$ And it seems look like this problem but i don't know how to process with this one. First, i tried to use series of $\frac{x}{x^...
OnTheWay's user avatar
  • 2,702
3 votes
1 answer
215 views

Is there an analytic solution to $\int_a^b \frac{\arctan(A+Bt)}{C^2 + (t-Z)^2}dt$?

Is there a sensible analytic solution to the following integral: $$\int_a^b \frac{\arctan(A+Bt)}{C^2 + (t-Z)^2}dt$$ where all constants are real and $C>0$. This integral is part of the third term ...
Mathis's user avatar
  • 31
3 votes
1 answer
314 views

Evaluating $\int_0^1\frac{\ln^2(1+x)+2\ln(x)\ln(1+x^2)}{1+x^2}dx$

How to show that $$\int_0^1\frac{\ln^2(1+x)+2\ln(x)\ln(1+x^2)}{1+x^2}dx=\frac{5\pi^3}{64}+\frac{\pi}{16}\ln^2(2)-4\,\text{G}\ln(2)$$ without breaking up the integrand since we already know: $$\int_0^1\...
Ali Shadhar's user avatar
  • 25.8k
2 votes
2 answers
316 views

Find close form for $\int_0^1 \frac{\log(x)\log(1+x^2)}{1+x^2}dx$

I am trying to find a closed form for the integral,$$\int_0^1 \frac{\log(x)\log(1+x^2)}{1+x^2}dx$$ I tried using the sub, $x=\frac{1-x}{1+x}$ but it was to no avail. I also tried the trig sub, $x=\tan(...
Lordose's user avatar
  • 121
11 votes
0 answers
436 views

Is the closed form of $\int_0^1\frac{\text{Li}_{2a+1}(x)}{1+x^2}dx$ known in the literature?

Using $$\text{Li}_{2a+1}(x)-\text{Li}_{2a+1}(1/x)=\frac{i\,\pi\ln^{2a}(x)}{(2a)!}+2\sum_{k=0}^a \frac{\zeta(2a-2k)}{(2k+1)!}\ln^{2k+1}(x)\tag{1}$$ and $$\int_0^1x^{n-1}\operatorname{Li}_a(x)\mathrm{d}...
Ali Shadhar's user avatar
  • 25.8k
1 vote
3 answers
146 views

Evaluating improper integral $\int_0^1 \frac{\log(x)}{x+\alpha}\; dx$ for small positive $\alpha$

Let $\alpha$ be a small positive real number. How do I obtain $$ I = \int_0^1 \frac{\log(x)}{x+\alpha}\; dx = -\frac{1}{2}(\log\alpha)^2 - \frac{\pi^2}{6} - \operatorname{Li}_2(-\alpha)$$? Maxima told ...
CoiL's user avatar
  • 23
35 votes
0 answers
2k views

Are these generalizations known in the literature?

By using $$\int_0^\infty\frac{\ln^{2n}(x)}{1+x^2}dx=|E_{2n}|\left(\frac{\pi}{2}\right)^{2n+1}\tag{a}$$ and $$\text{Li}_{a}(-z)+(-1)^a\text{Li}_{a}(-1/z)=-2\sum_{k=0}^{\lfloor{a/2}\rfloor }\frac{\eta(...
Ali Shadhar's user avatar
  • 25.8k
0 votes
1 answer
148 views

Evaluate: ${{\int_{0}^{1}\frac{\ln(1+x)^5}{x+2}dx-\int_{0}^{1}\frac{\ln(1+x)^5}{x+3}dx+5\ln2\int_{0}^{1}\frac{\ln(1+x)^4}{x+3}dx}}$

Evaluate: $${{I=\int_{0}^{1}\frac{\ln(1+x)^5}{x+2}dx-\int_{0}^{1}\frac{\ln(1+x)^5}{x+3}dx+5\ln2\int_{0}^{1}\frac{\ln(1+x)^4}{x+3}dx.}}$$ The answer is given below: $$ I=-\frac{7}{12}\pi^4\ln^2(2)-\...
Setness Ramesory's user avatar
10 votes
1 answer
410 views

Proving $\int_0^{1/2}\frac{\text{Li}_2(-x)}{1-x}dx=-\text{Li}_3\left(-\frac12\right)-\frac{13}{24}\zeta(3)$

By comparing some results, I found that $$\int_0^{\frac12}\frac{\text{Li}_2(-x)}{1-x}dx=-\text{Li}_3\left(-\frac12\right)-\frac{13}{24}\zeta(3).\tag{1}$$ I tried to prove it starting with applying IBP:...
Ali Shadhar's user avatar
  • 25.8k
1 vote
0 answers
117 views

Closed-form for $\int_0^{a^2} \mathrm{Ei} (-s) \frac{1 - e^s}{s} ds$

In my partial answer to this question: Integral involving polylogarithm and an exponential, I arrive at the integral $$ \int_0^{a^2} \mathrm{Ei} (-s) \frac{1 - e^s}{s} ds , ~~~~ (\ast) $$ where $a \in ...
o0BlueBeast0o's user avatar
1 vote
1 answer
164 views

Integral involving product of dilogarithm and an exponential

I am interested in the integral \begin{equation} \int_0^1 \mathrm{Li}_2 (u) e^{-a^2 u} d u , ~~~~ (\ast) \end{equation} where $\mathrm{Li}_2$ is the dilogarithm. This integral arose in my attempt to ...
o0BlueBeast0o's user avatar
12 votes
2 answers
718 views

General expressions for $\mathcal{L}(n)=\int_{0}^{\infty}\operatorname{Ci}(x)^n\text{d}x$

Define $$\operatorname{Ci}(x)=-\int_{x}^{ \infty} \frac{\cos(y)}{y}\text{d}y.$$ It is easy to show $$ \mathcal{L}(1)=\int_{0}^{\infty}\operatorname{Ci}(x)\text{d}x=0 $$ and $$\mathcal{L}(2)=\int_{0}^{\...
Setness Ramesory's user avatar
10 votes
1 answer
790 views

A generalized "Rare" integral involving $\operatorname{Li}_3$

In my previous post, it can be shown that $$\int_{0}^{1} \frac{\operatorname{Li}_2(-x)- \operatorname{Li}_2(1-x)+\ln(x)\ln(1+x)+\pi x\ln(1+x) -\pi x\ln(x)}{1+x^2}\frac{\text{d}x}{\sqrt{1-x^2} } =\...
Setness Ramesory's user avatar
17 votes
1 answer
1k views

A rare integral involving $\operatorname{Li}_2$

A rare but interesting integral problem: $$\int_{0}^{1} \frac{\operatorname{Li}_2(-x)- \operatorname{Li}_2(1-x)+\ln(x)\ln(1+x)+\pi x\ln(1+x) -\pi x\ln(x)}{1+x^2}\frac{\text{d}x}{\sqrt{1-x^2} } =\...
Setness Ramesory's user avatar
8 votes
2 answers
494 views

Finding $\int_{1}^{\infty} \frac{1}{1+x^2} \frac{\operatorname{Li}_2\left ( \frac{1-x}{2} \right ) }{\pi^2+\ln^2\left(\frac{x-1}{2}\right)}\text{d}x$

Prove the integral $$\int_{1}^{\infty} \frac{1}{1+x^2} \frac{\operatorname{Li}_2\left ( \frac{1-x}{2} \right ) }{ \pi^2+\ln^2\left ( \frac{x-1}{2} \right ) }\text{d}x =\frac{96C\ln2+7\pi^3}{12(\pi^2+...
Setness Ramesory's user avatar
9 votes
1 answer
329 views

Different ways to evaluate $\sum_{n=1}^\infty\frac{H_nH_n^{(2)}}{(n+1)(n+2)(n+3)}$

The following question: How to compute the harmonic series $$\sum_{n=1}^\infty\frac{H_nH_n^{(2)}}{(n+1)(n+2)(n+3)}$$ where $H_n=\sum_{k=1}^n\frac{1}{k}$ and $H_n^{(2)}=\sum_{k=1}^n\frac{1}{k^2}$, was ...
Ali Shadhar's user avatar
  • 25.8k
6 votes
1 answer
494 views

Is the closed form of $\int_0^1 \frac{x\ln^a(1+x)}{1+x^2}dx$ known in the literature?

We know how hard these integrals $$\int_0^1 \frac{x\ln(1+x)}{1+x^2}dx; \int_0^1 \frac{x\ln^2(1+x)}{1+x^2}dx; \int_0^1 \frac{x\ln^3(1+x)}{1+x^2}dx; ...$$ can be. So I decided to come up with a ...
Ali Shadhar's user avatar
  • 25.8k
8 votes
2 answers
428 views

Evaluating $\int_0^\infty\frac{\tan^{-1}av\cot^{-1}av}{1+v^2}\,dv$

The Weierstrass substitution stuck in my head after I used it to prove the rigidity of the braced hendecagon (and tridecagon). Thus I had another look at this question which I eventually answered in a ...
Parcly Taxel's user avatar

15 30 50 per page
1
2 3 4 5 6