Skip to main content

All Questions

6 votes
2 answers
326 views

How to show $\int_0^1\frac{\operatorname{Li}_2\left(\frac{1+x^2}{2}\right)}{1+x^2}dx=\ln(2)G$

I am trying to prove that $$\int_0^1\frac{\operatorname{Li}_2\left(\frac{1+x^2}{2}\right)}{1+x^2}dx=\ln(2)G,$$ where $G$ is the Catalan constant and $\operatorname{Li}_2(x)$ is the dilogarithm ...
Ali Shadhar's user avatar
  • 25.8k
3 votes
1 answer
314 views

Evaluating $\int_0^1\frac{\ln^2(1+x)+2\ln(x)\ln(1+x^2)}{1+x^2}dx$

How to show that $$\int_0^1\frac{\ln^2(1+x)+2\ln(x)\ln(1+x^2)}{1+x^2}dx=\frac{5\pi^3}{64}+\frac{\pi}{16}\ln^2(2)-4\,\text{G}\ln(2)$$ without breaking up the integrand since we already know: $$\int_0^1\...
Ali Shadhar's user avatar
  • 25.8k
10 votes
1 answer
410 views

Proving $\int_0^{1/2}\frac{\text{Li}_2(-x)}{1-x}dx=-\text{Li}_3\left(-\frac12\right)-\frac{13}{24}\zeta(3)$

By comparing some results, I found that $$\int_0^{\frac12}\frac{\text{Li}_2(-x)}{1-x}dx=-\text{Li}_3\left(-\frac12\right)-\frac{13}{24}\zeta(3).\tag{1}$$ I tried to prove it starting with applying IBP:...
Ali Shadhar's user avatar
  • 25.8k
9 votes
1 answer
329 views

Different ways to evaluate $\sum_{n=1}^\infty\frac{H_nH_n^{(2)}}{(n+1)(n+2)(n+3)}$

The following question: How to compute the harmonic series $$\sum_{n=1}^\infty\frac{H_nH_n^{(2)}}{(n+1)(n+2)(n+3)}$$ where $H_n=\sum_{k=1}^n\frac{1}{k}$ and $H_n^{(2)}=\sum_{k=1}^n\frac{1}{k^2}$, was ...
Ali Shadhar's user avatar
  • 25.8k
4 votes
2 answers
180 views

Prove $\int_0^1\frac{\text{Li}_2(-x^2)}{\sqrt{1-x^2}}\,dx=\pi\int_0^1\frac{\ln\left(\frac{2}{1+\sqrt{1+x}}\right)}{x}\,dx$

I managed here to prove $$\int_0^1\frac{\text{Li}_2(-x^2)}{\sqrt{1-x^2}}\,dx=\pi\int_0^1\frac{\ln\left(\frac{2}{1+\sqrt{1+x}}\right)}{x}\,dx$$ but what I did was converting the LHS integral to a ...
Ali Shadhar's user avatar
  • 25.8k
6 votes
1 answer
257 views

Integral from Mathematica's documentation: $\int_0^1 \frac{\log (\frac{1}{2}(1+\sqrt{4 x+1}))}{x} \, dx = \frac{\pi^2}{15} $

I like to peruse Mathematica's documentation and look at the 'Neat Examples': this is one I managed to figure out. Apparently it's due to Ramanujan: $$ I=\int_0^1 \frac{\log \left(\frac{1}{2} \left(1+\...
Integrand's user avatar
  • 8,369
4 votes
2 answers
335 views

How to approach $\sum_{n=0}^\infty(-1)^n\frac{H_{2n+1}}{(2n+1)^3}$ elegantly?

How to show that $$\sum_{n=0}^\infty(-1)^n\frac{H_{2n+1}}{(2n+1)^3}=\frac{\psi^{(3)}\left(\frac14\right)}{384}-\frac{\pi^4}{48}-\frac{35\pi}{128}\zeta(3)$$ without using the generating function: \...
Ali Shadhar's user avatar
  • 25.8k
10 votes
4 answers
619 views

How to evaluate $\int_0^{\pi/2} x\ln^2(\sin x)\textrm{d}x$ in a different way?

The following problem \begin{align} &\int_{0}^{\pi/2} x\ln^{2}\left(\sin\left(x\right)\right)\,{\rm d}x \\[5mm] = & \ \frac{1}{2}\ln^{2}\left(2\right)\zeta\left(2\right) - \frac{19}{32}\,\zeta\...
Ali Shadhar's user avatar
  • 25.8k
2 votes
0 answers
142 views

Evaluating $\int_0^1\frac{\ln(1+x^2)\text{Li}_2(x)}{x}dx$ without using $\sum_{n=1}^\infty\frac{H_n}{n^3}x^n$

I am trying to evaluate $$I=\int_0^1\frac{\ln(1+x^2)\text{Li}_2(x)}{x}dx$$ Integration by parts yields $$I=\frac58\zeta(4)-\frac12\int_0^1\frac{\ln(1-x)\text{Li}_2(-x^2)}{x}dx$$ Another related ...
Ali Shadhar's user avatar
  • 25.8k
1 vote
0 answers
144 views

Different approach to compute $\int_0^1\frac{\ln(x)}{1+x}\text{Li}_2\left(\frac{1+x}2\right)\ dx$

The following integral $$I=\int_0^1\frac{\ln(x)}{1+x}\text{Li}_2\left(\frac{1+x}2\right)\ dx$$ was already evaluated by @Knas here where he found $$I=-2\operatorname{Li}_4\left(\dfrac{1}{2}\right)-\...
Ali Shadhar's user avatar
  • 25.8k
2 votes
2 answers
547 views

Compute $\int_0^1\frac{\ln^2(1+x)\operatorname{Li}_2(-x)}{x}dx$

How to prove $$\int_0^1\frac{\ln^2(1+x)\operatorname{Li}_2(-x)}{x}dx=4\operatorname{Li}_5\left(\frac12\right)+4\ln2\operatorname{Li}_4\left(\frac12\right)-\frac{125}{32}\zeta(5)-\frac{1}{8}\zeta(2)...
Ali Shadhar's user avatar
  • 25.8k