5
$\begingroup$

Define the function $\mathcal{I}:\mathbb{R}^{2}\rightarrow\mathbb{R}$ by the definite integral

$$\mathcal{I}{\left(a,b\right)}:=\int_{0}^{1}\mathrm{d}x\,\frac{\operatorname{arsinh}{\left(ax\right)}\operatorname{arsinh}{\left(bx\right)}}{x},$$

where the inverse hyperbolic sine is given by

$$\operatorname{arsinh}{\left(z\right)}:=\int_{0}^{z}\mathrm{d}t\,\frac{1}{\sqrt{1+t^{2}}}=\ln{\left(z+\sqrt{1+z^{2}}\right)};~~~\small{z\in\mathbb{R}}.$$

Basic properties of $\mathcal{I}$ include:

$$\mathcal{I}{\left(a,b\right)}=\mathcal{I}{\left(b,a\right)},$$

$$\mathcal{I}{\left(0,b\right)}=\mathcal{I}{\left(a,0\right)}=0,$$

$$\mathcal{I}{\left(-a,b\right)}=\mathcal{I}{\left(a,-b\right)}=-\mathcal{I}{\left(a,b\right)}.$$

It suffices then to consider the $0<a\le b$ case to complete a general evaluation of $\mathcal{I}{\left(a,b\right)}$. The case of equal parameters can be evaluated in terms of polylogarithms after making the appropriate Euler substitution, as we'll show below. Unfortunately, that method doesn't seem to extend to the case of unequal parameters.

Question: Given $0<a<b$, can we find a closed form expression for $\mathcal{I}{\left(a,b\right)}$ in terms of polylogarithms?


Equal Parameter Case: Suppose $a\in\mathbb{R}\land a>0$, and set $\alpha:=\operatorname{arsinh}{\left(a\right)}>0$. We find

$$\begin{align} \mathcal{I}{\left(a,a\right)} &=\int_{0}^{1}\mathrm{d}x\,\frac{\left[\operatorname{arsinh}{\left(ax\right)}\right]^{2}}{x}\\ &=\int_{0}^{a}\mathrm{d}y\,\frac{\left[\operatorname{arsinh}{\left(y\right)}\right]^{2}}{y};~~~\small{\left[x=a^{-1}y\right]}\\ &=\int_{0}^{\operatorname{arsinh}{\left(a\right)}}\mathrm{d}\tau\,\frac{\tau^{2}\cosh{\left(\tau\right)}}{\sinh{\left(\tau\right)}};~~~\small{\left[y=\sinh{\left(\tau\right)}\right]}\\ &=\int_{0}^{\alpha}\mathrm{d}\tau\,\tau^{2}\coth{\left(\tau\right)}\\ &=\alpha^{2}\ln{\left(\sinh{\left(\alpha\right)}\right)}-\int_{0}^{\alpha}\mathrm{d}\tau\,2\tau\ln{\left(\sinh{\left(\tau\right)}\right)};~~~\small{I.B.P.}\\ &=\alpha^{2}\ln{\left(\sinh{\left(\alpha\right)}\right)}-\int_{0}^{\alpha}\mathrm{d}\tau\,2\tau\ln{\left(\frac{e^{\tau}-e^{-\tau}}{2}\right)}\\ &=\alpha^{2}\ln{\left(\sinh{\left(\alpha\right)}\right)}+\int_{0}^{\alpha}\mathrm{d}\tau\,2\tau\ln{\left(\frac{2e^{-\tau}}{1-e^{-2\tau}}\right)}\\ &=\alpha^{2}\ln{\left(\sinh{\left(\alpha\right)}\right)}+\int_{0}^{\alpha}\mathrm{d}\tau\,2\tau\left[\ln{\left(2\right)}-\tau-\ln{\left(1-e^{-2\tau}\right)}\right]\\ &=\alpha^{2}\ln{\left(\sinh{\left(\alpha\right)}\right)}+\int_{0}^{\alpha}\mathrm{d}\tau\,2\tau\ln{\left(2\right)}-\int_{0}^{\alpha}\mathrm{d}\tau\,2\tau^{2}-\int_{0}^{\alpha}\mathrm{d}\tau\,2\tau\ln{\left(1-e^{-2\tau}\right)}\\ &=\alpha^{2}\ln{\left(\sinh{\left(\alpha\right)}\right)}+\alpha^{2}\ln{\left(2\right)}-\frac23\alpha^{3}-\int_{0}^{\alpha}\mathrm{d}\tau\,\tau\frac{d}{d\tau}\operatorname{Li}_{2}{\left(e^{-2\tau}\right)}\\ &=\alpha^{2}\ln{\left(\sinh{\left(\alpha\right)}\right)}+\alpha^{2}\ln{\left(2\right)}-\frac23\alpha^{3}-\alpha\operatorname{Li}_{2}{\left(e^{-2\alpha}\right)}+\int_{0}^{\alpha}\mathrm{d}\tau\,\operatorname{Li}_{2}{\left(e^{-2\tau}\right)}\\ &=\alpha^{2}\ln{\left(\sinh{\left(\alpha\right)}\right)}+\alpha^{2}\ln{\left(2\right)}-\frac23\alpha^{3}-\alpha\operatorname{Li}_{2}{\left(e^{-2\alpha}\right)}-\frac12\operatorname{Li}_{3}{\left(e^{-2\alpha}\right)}+\frac12\operatorname{Li}_{3}{\left(1\right)}\\ &=\frac12\zeta{\left(3\right)}-\frac12\operatorname{Li}_{3}{\left(e^{-2\alpha}\right)}-\alpha\operatorname{Li}_{2}{\left(e^{-2\alpha}\right)}+\alpha^{2}\ln{\left(2\sinh{\left(\alpha\right)}\right)}-\frac23\alpha^{3}.\\ \end{align}$$


$\endgroup$
3
  • $\begingroup$ Probably not helpful, but the integral is a little bit reminiscent of the en.wikipedia.org/wiki/Frullani_integral $\endgroup$
    – Blitzer
    Commented Aug 30, 2023 at 7:42
  • 2
    $\begingroup$ For $I(a,a)$ you can make it faster using $x=\frac 1 a \sinh(t)$ to face $\int t^2 \coth (t)\,dt$ $\endgroup$ Commented Aug 30, 2023 at 8:45
  • $\begingroup$ @ClaudeLeibovici You're right! :) $\endgroup$
    – David H
    Commented Aug 31, 2023 at 16:09

1 Answer 1

5
$\begingroup$

Recall the addition formula for the inverse hyperbolic sine:

$$\operatorname{arsinh}{\left(z\right)}\pm\operatorname{arsinh}{\left(w\right)}=\operatorname{arsinh}{\left(z\sqrt{1+w^{2}}\pm w\sqrt{1+z^{2}}\right)};~~~\small{z\in\mathbb{R}\land w\in\mathbb{R}}.$$

For $(a,b)\in\mathbb{R}^{2}\land0<a<b$, we have

$$\begin{align} 2\mathcal{I}{\left(a,b\right)} &=2\int_{0}^{1}\mathrm{d}x\,\frac{\operatorname{arsinh}{\left(ax\right)}\operatorname{arsinh}{\left(bx\right)}}{x}\\ &=\int_{0}^{1}\mathrm{d}x\,\frac{\left[\operatorname{arsinh}{\left(ax\right)}\right]^{2}+\left[\operatorname{arsinh}{\left(bx\right)}\right]^{2}-\left[\operatorname{arsinh}{\left(bx\right)}-\operatorname{arsinh}{\left(ax\right)}\right]^{2}}{x}\\ &=\int_{0}^{1}\mathrm{d}x\,\frac{\left[\operatorname{arsinh}{\left(ax\right)}\right]^{2}}{x}+\int_{0}^{1}\mathrm{d}x\,\frac{\left[\operatorname{arsinh}{\left(bx\right)}\right]^{2}}{x}-\int_{0}^{1}\mathrm{d}x\,\frac{\left[\operatorname{arsinh}{\left(bx\right)}-\operatorname{arsinh}{\left(ax\right)}\right]^{2}}{x}\\ &=\mathcal{I}{\left(a,a\right)}+\mathcal{I}{\left(b,b\right)}-\int_{0}^{1}\mathrm{d}x\,\frac{\left[\operatorname{arsinh}{\left(bx\sqrt{1+a^{2}x^{2}}-ax\sqrt{1+b^{2}x^{2}}\right)}\right]^{2}}{x}.\\ \end{align}$$

The last line above suggests the quite complicated substitution

$$bx\sqrt{1+a^{2}x^{2}}-ax\sqrt{1+b^{2}x^{2}}=y.$$

It can be shown that any $(x,y)$ satisfying the substitution relation also satisfies the polynomial

$$\left[\left(b^{2}-a^{2}\right)^{2}-4a^{2}b^{2}y^{2}\right]x^{4}-2\left(a^{2}+b^{2}\right)y^{2}x^{2}+y^{4}=0,$$

which can be solved for $x^{2}$ using the quadratic formula, yielding

$$x^{2}=\frac{y^{2}}{a^{2}+b^{2}\mp2ab\sqrt{1+y^{2}}},$$

$$\implies x=\frac{y}{\sqrt{a^{2}+b^{2}-2ab\sqrt{1+y^{2}}}},$$

where the sign ambiguities have been chosen to give the correct limiting behavior as $x\to\infty$.

Differentiating both sides by $y$, we have

$$\frac{d}{dy}x^{2}=\frac{d}{dy}\left(\frac{y^{2}}{a^{2}+b^{2}-2ab\sqrt{1+y^{2}}}\right),$$

$$\implies x\frac{dx}{dy}=\frac{y}{a^{2}+b^{2}-2ab\sqrt{1+y^{2}}}+\frac{aby^{3}}{\left(a^{2}+b^{2}-2ab\sqrt{1+y^{2}}\right)^{2}\sqrt{1+y^{2}}},$$

$$\implies\frac{1}{x}\frac{dx}{dy}=\frac{1}{y}+\frac{aby}{\left(a^{2}+b^{2}-2ab\sqrt{1+y^{2}}\right)\sqrt{1+y^{2}}}.$$

Set $\eta:=\operatorname{arsinh}{\left(b\sqrt{1+a^{2}}-a\sqrt{1+b^{2}}\right)}>0$. Then, $\sinh{\left(\eta\right)}=b\sqrt{1+a^{2}}-a\sqrt{1+b^{2}}$. Continuing from where we left off in the evaluation of $\mathcal{I}$, we find the following upon applying the substitution:

$$\begin{align} 2\mathcal{I}{\left(a,b\right)} &=\mathcal{I}{\left(a,a\right)}+\mathcal{I}{\left(b,b\right)}-\int_{0}^{1}\mathrm{d}x\,\frac{\left[\operatorname{arsinh}{\left(bx\sqrt{1+a^{2}x^{2}}-ax\sqrt{1+b^{2}x^{2}}\right)}\right]^{2}}{x}\\ &=\mathcal{I}{\left(a,a\right)}+\mathcal{I}{\left(b,b\right)}-\int_{0}^{b\sqrt{1+a^{2}}-a\sqrt{1+b^{2}}}\mathrm{d}y\,\left[\frac{1}{y}+\frac{aby}{\left(a^{2}+b^{2}-2ab\sqrt{1+y^{2}}\right)\sqrt{1+y^{2}}}\right]\\ &~~~~~\times\left[\operatorname{arsinh}{\left(y\right)}\right]^{2};~~~\small{\left[bx\sqrt{1+a^{2}x^{2}}-ax\sqrt{1+b^{2}x^{2}}=y\right]}\\ &=\mathcal{I}{\left(a,a\right)}+\mathcal{I}{\left(b,b\right)}\\ &~~~~~-\int_{0}^{\sinh{\left(\eta\right)}}\mathrm{d}y\,\left[\frac{1}{y}+\frac{aby}{\left(a^{2}+b^{2}-2ab\sqrt{1+y^{2}}\right)\sqrt{1+y^{2}}}\right]\left[\operatorname{arsinh}{\left(y\right)}\right]^{2}\\ &=\mathcal{I}{\left(a,a\right)}+\mathcal{I}{\left(b,b\right)}-\int_{0}^{\sinh{\left(\eta\right)}}\mathrm{d}y\,\frac{\left[\operatorname{arsinh}{\left(y\right)}\right]^{2}}{y}\\ &~~~~~-\int_{0}^{\sinh{\left(\eta\right)}}\mathrm{d}y\,\frac{aby\left[\operatorname{arsinh}{\left(y\right)}\right]^{2}}{\left(a^{2}+b^{2}-2ab\sqrt{1+y^{2}}\right)\sqrt{1+y^{2}}}\\ &=\mathcal{I}{\left(a,a\right)}+\mathcal{I}{\left(b,b\right)}-\mathcal{I}{\left(\sinh{\left(\eta\right)},\sinh{\left(\eta\right)}\right)}\\ &~~~~~-\int_{0}^{\eta}\mathrm{d}\tau\,\frac{ab\tau^{2}\sinh{\left(\tau\right)}}{a^{2}+b^{2}-2ab\cosh{\left(\tau\right)}};~~~\small{\left[y=\sinh{\left(\tau\right)}\right]}.\\ \end{align}$$

Setting $p:=\frac{a}{b}$ and $q:=\exp{\left(\eta\right)}=\frac{b+\sqrt{1+b^{2}}}{a+\sqrt{1+a^{2}}}$, we have $0<p<1\land1<q<\frac{1}{p}$, and then

$$\begin{align} 2\mathcal{I}{\left(a,b\right)} &=\mathcal{I}{\left(a,a\right)}+\mathcal{I}{\left(b,b\right)}-\mathcal{I}{\left(\sinh{\left(\eta\right)},\sinh{\left(\eta\right)}\right)}-\int_{0}^{\eta}\mathrm{d}\tau\,\frac{ab\tau^{2}\sinh{\left(\tau\right)}}{a^{2}+b^{2}-2ab\cosh{\left(\tau\right)}}\\ &=\mathcal{I}{\left(a,a\right)}+\mathcal{I}{\left(b,b\right)}-\mathcal{I}{\left(\sinh{\left(\eta\right)},\sinh{\left(\eta\right)}\right)}-\int_{0}^{\eta}\mathrm{d}\tau\,\frac{p\tau^{2}\sinh{\left(\tau\right)}}{p^{2}+1-2p\cosh{\left(\tau\right)}}\\ &=\mathcal{I}{\left(a,a\right)}+\mathcal{I}{\left(b,b\right)}-\mathcal{I}{\left(\sinh{\left(\eta\right)},\sinh{\left(\eta\right)}\right)}\\ &~~~~~-\int_{1}^{\exp{\left(\eta\right)}}\mathrm{d}t\,\frac{1}{t}\cdot\frac{p\left(\frac{t^{2}-1}{2t}\right)\ln^{2}{\left(t\right)}}{p^{2}+1-2p\left(\frac{t^{2}+1}{2t}\right)};~~~\small{\left[\tau=\ln{\left(t\right)}\right]}\\ &=\mathcal{I}{\left(a,a\right)}+\mathcal{I}{\left(b,b\right)}-\mathcal{I}{\left(\sinh{\left(\eta\right)},\sinh{\left(\eta\right)}\right)}-\frac12\int_{1}^{\exp{\left(\eta\right)}}\mathrm{d}t\,\frac{1}{t}\cdot\frac{p\left(t^{2}-1\right)\ln^{2}{\left(t\right)}}{\left(p^{2}+1\right)t-p\left(t^{2}+1\right)}\\ &=\mathcal{I}{\left(a,a\right)}+\mathcal{I}{\left(b,b\right)}-\mathcal{I}{\left(\sinh{\left(\eta\right)},\sinh{\left(\eta\right)}\right)}-\frac12\int_{1}^{q}\mathrm{d}t\,\frac{p\left(t^{2}-1\right)\ln^{2}{\left(t\right)}}{t\left(1-pt\right)\left(t-p\right)}\\ &=\mathcal{I}{\left(a,a\right)}+\mathcal{I}{\left(b,b\right)}-\mathcal{I}{\left(\sinh{\left(\eta\right)},\sinh{\left(\eta\right)}\right)}-\frac12\int_{1}^{q}\mathrm{d}t\,\left[\frac{p}{\left(1-pt\right)}-\frac{p}{t\left(t-p\right)}\right]\ln^{2}{\left(t\right)}\\ &=\mathcal{I}{\left(a,a\right)}+\mathcal{I}{\left(b,b\right)}-\mathcal{I}{\left(\sinh{\left(\eta\right)},\sinh{\left(\eta\right)}\right)}-\frac12\int_{1}^{q}\mathrm{d}t\,\frac{p\ln^{2}{\left(t\right)}}{1-pt}+\frac12\int_{1}^{q}\mathrm{d}t\,\frac{p\ln^{2}{\left(t\right)}}{t\left(t-p\right)}\\ &=\mathcal{I}{\left(a,a\right)}+\mathcal{I}{\left(b,b\right)}-\mathcal{I}{\left(\sinh{\left(\eta\right)},\sinh{\left(\eta\right)}\right)}-\frac12\int_{1}^{q}\mathrm{d}t\,\frac{p\ln^{2}{\left(t\right)}}{1-pt}\\ &~~~~~+\frac12\int_{\frac{1}{q}}^{1}\mathrm{d}u\,\frac{p\ln^{2}{\left(u\right)}}{1-pu};~~~\small{\left[t=\frac{1}{u}\right]}\\ &=\mathcal{I}{\left(a,a\right)}+\mathcal{I}{\left(b,b\right)}-\mathcal{I}{\left(\sinh{\left(\eta\right)},\sinh{\left(\eta\right)}\right)}-\int_{1}^{q}\mathrm{d}t\,\frac{p\ln^{2}{\left(t\right)}}{2\left(1-pt\right)}+\int_{\frac{1}{q}}^{1}\mathrm{d}t\,\frac{p\ln^{2}{\left(t\right)}}{2\left(1-pt\right)}.\\ \end{align}$$

The following derivative is readily verified:

$$\frac{d}{dt}\left[\operatorname{Li}_{3}{\left(pt\right)}-\ln{\left(t\right)}\operatorname{Li}_{2}{\left(pt\right)}-\frac12\ln^{2}{\left(t\right)}\ln{\left(1-pt\right)}\right]=\frac{p\ln^{2}{\left(t\right)}}{2\left(1-pt\right)};~~~\small{0<p\land0<t<\frac{1}{p}}.$$

Thus,

$$\begin{align} 2\mathcal{I}{\left(a,b\right)} &=\mathcal{I}{\left(a,a\right)}+\mathcal{I}{\left(b,b\right)}-\mathcal{I}{\left(\sinh{\left(\eta\right)},\sinh{\left(\eta\right)}\right)}-\int_{1}^{q}\mathrm{d}t\,\frac{p\ln^{2}{\left(t\right)}}{2\left(1-pt\right)}+\int_{\frac{1}{q}}^{1}\mathrm{d}t\,\frac{p\ln^{2}{\left(t\right)}}{2\left(1-pt\right)}\\ &=\mathcal{I}{\left(a,a\right)}+\mathcal{I}{\left(b,b\right)}-\mathcal{I}{\left(\sinh{\left(\eta\right)},\sinh{\left(\eta\right)}\right)}\\ &~~~~~-\int_{1}^{q}\mathrm{d}t\,\frac{d}{dt}\left[\operatorname{Li}_{3}{\left(pt\right)}-\ln{\left(t\right)}\operatorname{Li}_{2}{\left(pt\right)}-\frac12\ln^{2}{\left(t\right)}\ln{\left(1-pt\right)}\right]\\ &~~~~~+\int_{\frac{1}{q}}^{1}\mathrm{d}t\,\frac{d}{dt}\left[\operatorname{Li}_{3}{\left(pt\right)}-\ln{\left(t\right)}\operatorname{Li}_{2}{\left(pt\right)}-\frac12\ln^{2}{\left(t\right)}\ln{\left(1-pt\right)}\right]\\ &=\mathcal{I}{\left(a,a\right)}+\mathcal{I}{\left(b,b\right)}-\mathcal{I}{\left(\sinh{\left(\eta\right)},\sinh{\left(\eta\right)}\right)}\\ &~~~~~-\left[\operatorname{Li}_{3}{\left(pq\right)}-\ln{\left(q\right)}\operatorname{Li}_{2}{\left(pq\right)}-\frac12\ln^{2}{\left(q\right)}\ln{\left(1-pq\right)}\right]+\operatorname{Li}_{3}{\left(p\right)}\\ &~~~~~+\operatorname{Li}_{3}{\left(p\right)}-\left[\operatorname{Li}_{3}{\left(\frac{p}{q}\right)}-\ln{\left(\frac{1}{q}\right)}\operatorname{Li}_{2}{\left(\frac{p}{q}\right)}-\frac12\ln^{2}{\left(\frac{1}{q}\right)}\ln{\left(1-\frac{p}{q}\right)}\right]\\ &=\mathcal{I}{\left(a,a\right)}+\mathcal{I}{\left(b,b\right)}-\mathcal{I}{\left(\sinh{\left(\eta\right)},\sinh{\left(\eta\right)}\right)}+2\operatorname{Li}_{3}{\left(p\right)}-\operatorname{Li}_{3}{\left(pq\right)}-\operatorname{Li}_{3}{\left(\frac{p}{q}\right)}\\ &~~~~~+\ln{\left(q\right)}\operatorname{Li}_{2}{\left(pq\right)}-\ln{\left(q\right)}\operatorname{Li}_{2}{\left(\frac{p}{q}\right)}+\frac12\ln^{2}{\left(q\right)}\left[\ln{\left(1-pq\right)}+\ln{\left(1-\frac{p}{q}\right)}\right]\\ &=\mathcal{I}{\left(a,a\right)}+\mathcal{I}{\left(b,b\right)}-\mathcal{I}{\left(\sinh{\left(\eta\right)},\sinh{\left(\eta\right)}\right)}+2\operatorname{Li}_{3}{\left(\frac{a}{b}\right)}-\operatorname{Li}_{3}{\left(\frac{a}{b}e^{\eta}\right)}-\operatorname{Li}_{3}{\left(\frac{a}{b}e^{-\eta}\right)}\\ &~~~~~+\eta\operatorname{Li}_{2}{\left(\frac{a}{b}e^{\eta}\right)}-\eta\operatorname{Li}_{2}{\left(\frac{a}{b}e^{-\eta}\right)}+\frac12\eta^{2}\ln{\left(1+\frac{a^{2}}{b^{2}}-\frac{2a}{b}\cosh{\left(\eta\right)}\right)}.\blacksquare\\ \end{align}$$

Since the equal parameter case for $\mathcal{I}$ has already been solved, we are done!


$\endgroup$
2
  • 1
    $\begingroup$ Incredible work and beautiful solution ! $\endgroup$ Commented Sep 1, 2023 at 7:12
  • $\begingroup$ @ClaudeLeibovici Thank you! This was a fun one. $\endgroup$
    – David H
    Commented Sep 2, 2023 at 19:28

You must log in to answer this question.

Not the answer you're looking for? Browse other questions tagged .