6
$\begingroup$

I am trying to prove that $$\int_0^1\frac{\operatorname{Li}_2\left(\frac{1+x^2}{2}\right)}{1+x^2}dx=\ln(2)G,$$ where $G$ is the Catalan constant and $\operatorname{Li}_2(x)$ is the dilogarithm function, which is proposed by my friend Sujeethan Balendran and solved in two methods by my friend Cornel Valean in his second book "More (Almost) Impossible Integrals, Sums, and Series" page 345. I want to try it differently using as less results and relations as possible and here is my attempt:


$$\int_0^1\frac{\operatorname{Li}_2\left(\frac{1+x^2}{2}\right)}{1+x^2}dx=\int_0^1\frac{1}{1+x^2}\left(\int_0^1\frac{-\frac{1+x^2}{2}\ln(y)}{1-\frac{1+x^2}{2}y}dy\right)dx$$

$$=\int_0^1 \ln(y)\left(\int_0^1\frac{dx}{(1+x^2)y-2}\right)dy$$

$$=\int_0^1\ln(y)\left(\frac{1}{y}\sqrt{\frac{y}{y-2}}\arctan \sqrt{\frac{y}{y-2}}\right)dy\quad \text{let} \quad\sqrt{\frac{y}{y-2}}=ix$$

$$=\int_0^1\frac{-2\operatorname{arctanh}(x)\ln\left(\frac{2x^2}{1+x^2}\right)}{1+x^2}dx$$

$$=\int_0^1\frac{\ln\left(\frac{1-x}{1+x}\right)\ln\left(\frac{2x^2}{1+x^2}\right)}{1+x^2}dx\quad \text{let} \quad\frac{1-x}{1+x}\to x$$

$$=\int_0^1\frac{\ln(x)\ln\left(\frac{(1-x)^2}{1+x^2}\right)}{1+x^2}dx$$

$$=2\int_0^1\frac{\ln(x)\ln(1-x)}{1+x^2}dx-\int_0^1\frac{\ln(x)\ln(1+x^2)}{1+x^2}dx$$

These two integrals are given here and here respectively and combining them gives $\ln(2)G.$


Question: Is there an elegant way to prove $\displaystyle\int_0^1\frac{\ln(x)\ln\left(\frac{(1-x)^2}{1+x^2}\right)}{1+x^2}dx=\ln(2)G$ without breaking the integrand or is there a different way to evaluate $\displaystyle\int_0^1\frac{\operatorname{Li}_2\left(\frac{1+x^2}{2}\right)}{1+x^2}dx$?

Thank you,

$\endgroup$
5
  • $\begingroup$ Probably help if you would tell us what $G$ stands for. $\endgroup$ Commented Jul 22, 2023 at 2:47
  • $\begingroup$ @Gerry Myerson its Catalan constant. $\endgroup$ Commented Jul 22, 2023 at 2:52
  • $\begingroup$ Good. And, what is Catalan's constant? $\endgroup$ Commented Jul 22, 2023 at 3:46
  • $\begingroup$ @GerryMyerson its here en.wikipedia.org/wiki/Catalan%27s_constant $\endgroup$ Commented Jul 22, 2023 at 3:52
  • $\begingroup$ If you want to know something, Ali, should you make it hard for people to help you, or should you make it easier? Please, put the definition of Catalan's constant in the body of your question. $\endgroup$ Commented Jul 22, 2023 at 6:40

2 Answers 2

6
$\begingroup$

Substitute $x=\tan t$ to rewrite the integral as

$$\int_0^1\frac{\ln x\ln\frac{(1-x)^2}{1+x^2}}{1+x^2}\ dx = 2\int_0^{\frac\pi4}\ln(\tan t)\ln(\cos t-\sin t)\ dt $$ where the transformed integral is evaluated elementarily here.

$\endgroup$
3
  • $\begingroup$ Thank you Quanto very nice proof but based on your steps, we are breaking the integrand. $\endgroup$ Commented Jul 22, 2023 at 4:40
  • 1
    $\begingroup$ @AliShadhar - Right, I did break up the integrand. I don’t know how to keep it in one piece. I guess my goal was to keep it elementary $\endgroup$
    – Quanto
    Commented Jul 22, 2023 at 9:05
  • $\begingroup$ Still very nice approach (+1) $\endgroup$ Commented Sep 26, 2023 at 5:19
6
$\begingroup$

Solution by Sujeethan Balendran:

By the change of variable $x=\tan\left(\frac{t}{2}\right)$, we have $$\int_0^1\frac{\ln(x)}{1+x^2}\ln\left(\frac{1+x}{1-x}\right)dx=\frac12\int_0^{\pi/2}\ln\left(\tan\frac{x}{2}\right)\ln\left(\tan\left(\frac{\pi}{4}+\frac{x}{2}\right)\right)dx$$

use the Fourier series of $\ln(\tan x)$

$$=\frac12\int_0^{\pi/2}\ln\left(\tan\frac{x}{2}\right)\left(2\sum_{n=1}^\infty\frac{(-1)^{n-1}\sin((2n-1)x)}{2n-1}\right)dx$$

$$=\sum_{n=1}^\infty\frac{(-1)^{n-1}}{2n-1}\left(\int_0^{\pi/2}\sin((2n-1)x)\ln\left(\tan\frac{x}{2}\right)dx\right)$$

$$=\sum_{n=1}^\infty\frac{(-1)^{n-1}}{2n-1}\left(\int_0^{\pi/2} d\left(\frac{1-\cos((2n-1)x)}{2n-1}\right)\ln\left(\tan\frac{x}{2}\right)dx\right)$$

$$=\sum_{n=1}^\infty\frac{(-1)^{n-1}}{2n-1}\left( \frac{1-\cos((2n-1)x)}{2n-1}\ln\left(\tan\frac{x}{2}\right)\bigg|_0^{\pi/2}-2\int_0^{\pi/2}\frac{\sin^2\left(\frac{(2n-1)x}{2}\right)}{(2n-1)\sin x}dx\right)$$

$$=2\sum_{n=1}^\infty\frac{(-1)^{n}}{(2n-1)^2} \int_0^{\pi/2}\frac{\sin^2\left(\frac{(2n-1)x}{2}\right)}{\sin x}dx$$

shift the index then separate the first term

$$=-2\int_0^{\pi/2}\frac{\sin^2\left(\frac{x}{2}\right)}{\sin x}dx+2\sum_{n=1}^\infty\frac{(-1)^{n-1}}{(2n+1)^2} \int_0^{\pi/2}\frac{\sin^2\left(\frac{(2n+1)x}{2}\right)}{\sin x}dx$$

$$=-\ln(2)+2\sum_{n=1}^\infty\frac{(-1)^{n-1}}{(2n+1)^2} \left(\frac{H_n+\overline{H}_n+\ln(2)}{2}\right)$$

$$=-\ln(2)+\sum_{n=1}^\infty\frac{(-1)^{n-1}}{(2n+1)^2} \left(H_n+\overline{H}_n\right)+\ln(2)\sum_{n=1}^\infty\frac{(-1)^{n-1}}{(2n+1)^2}$$

$$=\ln(2)\left(-1+\sum_{n=1}^\infty\frac{(-1)^{n-1}}{(2n+1)^2}\right)+\sum_{n=1}^\infty(-1)^{n-1} \left(H_n+\overline{H}_n\right)\left(-\int_0^1 x^{2n}\ln(x)dx\right)$$

$$=\ln(2)\sum_{n=0}^\infty\frac{(-1)^{n-1}}{(2n+1)^2}-\int_0^1 \ln(x)\left(\sum_{n=1}^\infty(-1)^{n-1}H_n x^{2n}+\sum_{n=1}^\infty(-1)^{n-1}\overline{H}_n x^{2n}\right)dx$$

$$=-\ln(2)G-\int_0^1 \ln(x)\left(\frac{\ln(1+x^2)}{1+x^2}-\frac{\ln(1-x^2)}{1+x^2}\right)dx$$

$$=-\ln(2)G+\int_0^1\frac{\ln(x)}{1+x^2}\ln\left(\frac{1-x^2}{1+x^2}\right)dx$$

So we have

$$\int_0^1\frac{\ln(x)}{1+x^2}\ln\left(\frac{1+x}{1-x}\right)dx=-\ln(2)G+\int_0^1\frac{\ln(x)}{1+x^2}\ln\left(\frac{1-x^2}{1+x^2}\right)dx$$

or

$$\int_0^1\frac{\ln(x)}{1+x^2}\ln\left(\frac{(1-x)^2}{1+x^2}\right)dx=\ln(2)G$$

Note: $\overline{H}_n$ is defined as $\sum_{k=1}^n\frac{(-1)^{k-1}}k$

$\endgroup$
4
  • $\begingroup$ thanks brother😊😊 $\endgroup$
    – SSS
    Commented Jul 25, 2023 at 6:26
  • $\begingroup$ @SSS welcome my friend $\endgroup$ Commented Jul 25, 2023 at 6:54
  • $\begingroup$ That answer is too non-trivial, I admire your friend's genius. I added the definition of the alternating harmonic numbers, is that okay? $\endgroup$ Commented Jul 31, 2023 at 20:36
  • $\begingroup$ @KamalSaleh of course that's fine and thank you. sorry to reply late just saw your comment. $\endgroup$ Commented Sep 26, 2023 at 5:18

You must log in to answer this question.

Not the answer you're looking for? Browse other questions tagged .