Skip to main content

Questions tagged [sequences-and-series]

For questions concerning sequences and series. Typical questions concern, but are not limited to: identifying sequences, identifying terms, recurrence relations, $\epsilon-N$ proofs of convergence, convergence tests, finding closed forms for sums. For questions on finite sums, use the (summation) tag instead.

860 votes
54 answers
145k views

Different ways to prove $\sum_{k=1}^\infty \frac{1}{k^2}=\frac{\pi^2}{6}$ (the Basel problem)

As I have heard people did not trust Euler when he first discovered the formula (solution of the Basel problem) $$\zeta(2)=\sum_{k=1}^\infty \frac{1}{k^2}=\frac{\pi^2}{6}$$ However, Euler was Euler ...
452 votes
24 answers
91k views

How can I evaluate $\sum_{n=0}^\infty(n+1)x^n$?

How can I evaluate $$\sum_{n=1}^\infty\frac{2n}{3^{n+1}}$$? I know the answer thanks to Wolfram Alpha, but I'm more concerned with how I can derive that answer. It cites tests to prove that it is ...
backus's user avatar
  • 4,735
446 votes
10 answers
30k views

My son's Sum of Some is beautiful! But what is the proof or explanation?

My youngest son is in $6$th grade. He likes to play with numbers. Today, he showed me his latest finding. I call it his "Sum of Some" because he adds up some selected numbers from a series of numbers, ...
haugsire's user avatar
  • 3,441
268 votes
9 answers
36k views

Evaluating $\lim\limits_{n\to\infty} e^{-n} \sum\limits_{k=0}^{n} \frac{n^k}{k!}$

I'm supposed to calculate: $$\lim_{n\to\infty} e^{-n} \sum_{k=0}^{n} \frac{n^k}{k!}$$ By using WolframAlpha, I might guess that the limit is $\frac{1}{2}$, which is a pretty interesting and nice ...
user 1591719's user avatar
  • 44.4k
246 votes
12 answers
48k views

Is there an elementary proof that $\sum \limits_{k=1}^n \frac1k$ is never an integer?

If $n>1$ is an integer, then $\sum \limits_{k=1}^n \frac1k$ is not an integer. If you know Bertrand's Postulate, then you know there must be a prime $p$ between $n/2$ and $n$, so $\frac 1p$ ...
Anton Geraschenko's user avatar
235 votes
6 answers
84k views

When can you switch the order of limits?

Suppose you have a double sequence $\displaystyle a_{nm}$. What are sufficient conditions for you to be able to say that $\displaystyle \lim_{n\to \infty}\,\lim_{m\to \infty}{a_{nm}} = \lim_{m\to \...
asmeurer's user avatar
  • 9,822
198 votes
8 answers
38k views

Are there any series whose convergence is unknown?

Are there any infinite series about which we don't know whether it converges or not? Or are the convergence tests exhaustive, so that in the hands of a competent mathematician any series will ...
pseudosudo's user avatar
  • 2,271
189 votes
10 answers
41k views

Self-Contained Proof that $\sum\limits_{n=1}^{\infty} \frac1{n^p}$ Converges for $p > 1$

To prove the convergence of the p-series $$\sum_{n=1}^{\infty} \frac1{n^p}$$ for $p > 1$, one typically appeals to either the Integral Test or the Cauchy Condensation Test. I am wondering if ...
admchrch's user avatar
  • 2,824
188 votes
28 answers
20k views

Proving the identity $\sum_{k=1}^n {k^3} = \big(\sum_{k=1}^n k\big)^2$ without induction

I recently proved that $$\sum_{k=1}^n k^3 = \left(\sum_{k=1}^n k \right)^2$$ using mathematical induction. I'm interested if there's an intuitive explanation, or even a combinatorial interpretation ...
Fernando Martin's user avatar
183 votes
0 answers
5k views

Sorting of prime gaps

Let $g_i$ be the $i^{th}$ prime gap $p_{i+1}-p_i.$ If we rearrange the sequence $ (g_{n,i})_{i=1}^n$ so that for any finite $n$, if the gaps are arranged from smallest to largest, we have a new ...
daniel's user avatar
  • 10.3k
177 votes
7 answers
9k views

Proof of $\frac{1}{e^{\pi}+1}+\frac{3}{e^{3\pi}+1}+\frac{5}{e^{5\pi}+1}+\ldots=\frac{1}{24}$

I would like to prove that $\displaystyle\sum_{\substack{n=1\\n\text{ odd}}}^{\infty}\frac{n}{e^{n\pi}+1}=\frac1{24}$. I found a solution by myself 10 hours after I posted it, here it is: $$f(x)=\...
danodare's user avatar
  • 1,915
166 votes
26 answers
38k views

Why does the series $\sum_{n=1}^\infty\frac1n$ not converge?

Can someone give a simple explanation as to why the harmonic series $$\sum_{n=1}^\infty\frac1n=\frac 1 1 + \frac 12 + \frac 13 + \cdots $$ doesn't converge, on the other hand it grows very slowly?...
bryn's user avatar
  • 9,805
160 votes
4 answers
10k views

Sum of random decreasing numbers between 0 and 1: does it converge??

Let's define a sequence of numbers between 0 and 1. The first term, $r_1$ will be chosen uniformly randomly from $(0, 1)$, but now we iterate this process choosing $r_2$ from $(0, r_1)$, and so on, so ...
Carlos Toscano-Ochoa's user avatar
154 votes
14 answers
21k views

Why does an argument similiar to 0.999...=1 show 999...=-1?

I accept that two numbers can have the same supremum depending on how you generate a decimal representation. So $2.4999\ldots = 2.5$ etc. Can anyone point me to resources that would explain what the ...
CommonToad's user avatar
  • 1,605
153 votes
33 answers
88k views

Sum of First $n$ Squares Equals $\frac{n(n+1)(2n+1)}{6}$

I am just starting into calculus and I have a question about the following statement I encountered while learning about definite integrals: $$\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$$ I really ...
Nathan Osman's user avatar
  • 1,883
144 votes
16 answers
11k views

Proving an alternating Euler sum: $\sum_{k=1}^{\infty} \frac{(-1)^{k+1} H_k}{k} = \frac{1}{2} \zeta(2) - \frac{1}{2} \log^2 2$

Let $$A(p,q) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}H^{(p)}_k}{k^q},$$ where $H^{(p)}_n = \sum_{i=1}^n i^{-p}$, the $n$th $p$-harmonic number. The $A(p,q)$'s are known as alternating Euler sums. ...
Mike Spivey's user avatar
  • 55.8k
144 votes
1 answer
6k views

Identification of a curious function

During computation of some Shapley values (details below), I encountered the following function: $$ f\left(\sum_{k \geq 0} 2^{-p_k}\right) = \sum_{k \geq 0} \frac{1}{(p_k+1)\binom{p_k}{k}}, $$ where $...
Yuval Filmus's user avatar
  • 57.3k
141 votes
36 answers
308k views

Proof that $1+2+3+4+\cdots+n = \frac{n\times(n+1)}2$

Why is $1+2+3+4+\ldots+n = \dfrac{n\times(n+1)}2$ $\space$ ?
b1_'s user avatar
  • 1,585
135 votes
7 answers
108k views

Values of $\sum_{n=0}^\infty x^n$ and $\sum_{n=0}^N x^n$

Why does the following hold: \begin{equation*} \displaystyle \sum\limits_{n=0}^{\infty} 0.7^n=\frac{1}{1-0.7} = 10/3\quad ? \end{equation*} Can we generalize the above to $\displaystyle \sum_{n=...
123 votes
18 answers
53k views

Nice proofs of $\zeta(4) = \frac{\pi^4}{90}$?

I know some nice ways to prove that $\zeta(2) = \sum_{n=1}^{\infty} \frac{1}{n^2} = \pi^2/6$. For example, see Robin Chapman's list or the answers to the question "Different methods to compute $\sum_{...
Mike Spivey's user avatar
  • 55.8k
122 votes
4 answers
33k views

Motivation for Ramanujan's mysterious $\pi$ formula

The following formula for $\pi$ was discovered by Ramanujan: $$\frac1{\pi} = \frac{2\sqrt{2}}{9801} \sum_{k=0}^\infty \frac{(4k)!(1103+26390k)}{(k!)^4 396^{4k}}\!$$ Does anyone know how it works, or ...
Nick Alger's user avatar
  • 19.1k
117 votes
1 answer
4k views

Convergence of $\sum_{n=1}^{\infty} \frac{\sin(n!)}{n}$

Is there a way to assess the convergence of the following series? $$\sum_{n=1}^{\infty} \frac{\sin(n!)}{n}$$ From numerical estimations it seems to be convergent but I don't know how to prove it.
Leonardo Massai's user avatar
115 votes
25 answers
17k views

Can an infinite sum of irrational numbers be rational?

Let $S = \sum_ {k=1}^\infty a_k $ where each $a_k$ is positive and irrational. Is it possible for $S$ to be rational, considering the additional restriction that none of the $a_k$'s is a linear ...
User1's user avatar
  • 1,841
115 votes
5 answers
8k views

How to sum this series for $\pi/2$ directly?

The sum of the series $$ \frac{\pi}{2}=\sum_{k=0}^\infty\frac{k!}{(2k+1)!!}\tag{1} $$ can be derived by accelerating the Gregory Series $$ \frac{\pi}{4}=\sum_{k=0}^\infty\frac{(-1)^k}{2k+1}\tag{2} ...
robjohn's user avatar
  • 348k
113 votes
16 answers
48k views

If $(a_n)\subset[0,\infty)$ is non-increasing and $\sum_{n=1}^\infty a_n<\infty$, then $\lim\limits_{n\to\infty}{n a_n} = 0$

I'm studying for qualifying exams and ran into this problem. Show that if $\{a_n\}$ is a nonincreasing sequence of positive real numbers such that $\sum_n a_n$ converges, then $\lim\limits_{n \...
dls's user avatar
  • 4,666
110 votes
6 answers
20k views

Why is a geometric progression called so? [duplicate]

Just curious about why geometric progression is called so. Is it related to geometry?
dark32's user avatar
  • 1,401
108 votes
3 answers
4k views

How prove this nice limit $\lim\limits_{n\to\infty}\frac{a_{n}}{n}=\frac{12}{\log{432}}$

Nice problem: Let $a_{0}=1$ and $$a_{n}=a_{\left\lfloor n/2\right\rfloor}+a_{\left\lfloor n/3 \right\rfloor}+a_{\left\lfloor n/6\right\rfloor}.$$ Show that $$\lim_{n\to\infty}\dfrac{a_{n}}{n}=\...
math110's user avatar
  • 93.6k
104 votes
13 answers
9k views

Limit of sequence in which each term is defined by the average of preceding two terms

We have a sequence of numbers $x_n$ determined by the equality $$x_n = \frac{x_{n-1} + x_{n-2}}{2}$$ The first and zeroth term are $x_1$ and $x_0$.The following limit must be expressed in terms of $...
Ananth Kamath's user avatar
103 votes
4 answers
5k views

A community project: prove (or disprove) that $\sum_{n\geq 1}\frac{\sin(2^n)}{n}$ is convergent

As the title says, I would like to launch a community project for proving that the series $$\sum_{n\geq 1}\frac{\sin(2^n)}{n}$$ is convergent. An extensive list of considerations follows. The ...
Jack D'Aurizio's user avatar
101 votes
1 answer
4k views

Arithmetic-geometric mean of 3 numbers

The arithmetic-geometric mean$^{[1]}$$\!^{[2]}$ of 2 numbers $a$ and $b$ is denoted $\operatorname{AGM}(a,b)$ and defined as follows: $$\text{Let}\quad a_0=a,\quad b_0=b,\quad a_{n+1}=\frac{a_n+b_n}2,...
Vladimir Reshetnikov's user avatar
100 votes
14 answers
54k views

How to find a general sum formula for the series: 5+55+555+5555+.....?

I have a question about finding the sum formula of n-th terms. Here's the series: $5+55+555+5555$+...... What is the general formula to find the sum of n-th terms? My attempts: I think I need to ...
akusaja's user avatar
  • 2,551
99 votes
6 answers
9k views

Can the product of infinitely many elements from $\mathbb Q$ be irrational?

I know there are infinite sums of rational values, which are irrational (for example the Basel Problem). But I was wondering, whether the product of infinitely many rational numbers can be irrational. ...
Mister Set's user avatar
  • 1,257
97 votes
2 answers
34k views

Predicting Real Numbers

Here is an astounding riddle that at first seems impossible to solve. I'm certain the axiom of choice is required in any solution, and I have an outline of one possible solution, but would like to ...
97 votes
2 answers
2k views

When does a sequence of rotated-and-circumscribed rectangles converge to a square?

Recently I came up with an algebra problem with a nice geometric representation. Basically, I would like to know what happens if we repeatedly circumscribe a rectangle by another rectangle which is ...
samgiz's user avatar
  • 773
95 votes
2 answers
6k views

Prove elementarily that $\sqrt[n+1] {(n+1)!} - \sqrt[n] {n!}$ is strictly decreasing

Prove without calculus that the sequence $$L_{n}=\sqrt[n+1] {(n+1)!} - \sqrt[n] {n!}, \space n\in \mathbb N$$ is strictly decreasing.
user 1591719's user avatar
  • 44.4k
93 votes
6 answers
3k views

Contest problem: Show $\sum_{n = 1}^\infty \frac{n^2a_n}{(a_1+\cdots+a_n)^2}<\infty$ s.t., $a_i>0$, $\sum_{n = 1}^\infty \frac{1}{a_n}<\infty$ [closed]

The following is probably a math contest problem. I have been unable to locate the original source. Suppose that $\{a_i\}$ is a sequence of positive real numbers and the series $\displaystyle\sum_{n ...
Potato's user avatar
  • 40.5k
92 votes
4 answers
6k views

How to prove that $\frac{\zeta(2) }{2}+\frac{\zeta (4)}{2^3}+\frac{\zeta (6)}{2^5}+\frac{\zeta (8)}{2^7}+\cdots=1$?

How can one prove this identity? $$\frac{\zeta(2) }{2}+\frac{\zeta (4)}{2^3}+\frac{\zeta (6)}{2^5}+\frac{\zeta (8)}{2^7}+\cdots=1$$ There is a formula for $\zeta$ values at even integers, but it ...
E.H.E's user avatar
  • 23.4k
90 votes
8 answers
19k views

Is there a size of rectangle that retains its ratio when it's folded in half?

A hypothetical (and maybe practical) question has been nagging at me. If you had a piece of paper with dimensions 4 and 3 (4:3), folding it in half along the long side (once) would result in 2 inches ...
Pyraminx's user avatar
  • 1,011
89 votes
4 answers
46k views

Every subsequence of $x_n$ has a further subsequence which converges to $x$. Then the sequence $x_n$ converges to $x$.

Is the following true? Let $x_n$ be a sequence with the following property: Every subsequence of $x_n$ has a further subsequence which converges to $x$. Then the sequence $x_n$ converges to $x$. I ...
gulim's user avatar
  • 933
88 votes
9 answers
10k views

Generalized Euler sum $\sum_{n=1}^\infty \frac{H_n}{n^q}$

I found the following formula $$\sum_{n=1}^\infty \frac{H_n}{n^q}= \left(1+\frac{q}{2} \right)\zeta(q+1)-\frac{1}{2}\sum_{k=1}^{q-2}\zeta(k+1)\zeta(q-k)$$ and it is cited that Euler proved the ...
Zaid Alyafeai's user avatar
86 votes
5 answers
24k views

Limit of the nested radical $x_{n+1} = \sqrt{c+x_n}$

(Fitzpatrick Advanced Calculus 2e, Sec. 2.4 #12) For $c \gt 0$, consider the quadratic equation $x^2 - x - c = 0, x > 0$. Define the sequence $\{x_n\}$ recursively by fixing $|x_1| \lt c$ and then, ...
cnuulhu's user avatar
  • 1,005
86 votes
1 answer
2k views

Conjectured formula for the Fabius function

The Fabius function is the unique function ${\bf F}:\mathbb R\to[-1, 1]$ satisfying the following conditions: a functional–integral equation$\require{action} \require{enclose}{^{\texttip{\dagger}{a ...
Vladimir Reshetnikov's user avatar
85 votes
0 answers
2k views

Regular way to fill a $1\times1$ square with $\frac{1}{n}\times\frac{1}{n+1}$ rectangles?

The series $$\sum_{n=1}^{\infty}\frac{1}{n(n+1)}=1$$ suggests it might be possible to tile a $1\times1$ square with nonrepeated rectangles of the form $\frac{1}{n}\times\frac{1}{n+1}$. Is there a ...
2'5 9'2's user avatar
  • 55.1k
84 votes
3 answers
11k views

Convergence of $\sqrt{n}x_{n}$ where $x_{n+1} = \sin(x_{n})$

Consider the sequence defined as $x_1 = 1$ $x_{n+1} = \sin x_n$ I think I was able to show that the sequence $\sqrt{n} x_{n}$ converges to $\sqrt{3}$ by a tedious elementary method which I wasn't ...
Aryabhata's user avatar
  • 82.6k
82 votes
3 answers
4k views

How to find this limit: $A=\lim_{n\to \infty}\sqrt{1+\sqrt{\frac{1}{2}+\sqrt{\frac{1}{3}+\cdots+\sqrt{\frac{1}{n}}}}}$

Question: Show that $$A=\lim_{n\to \infty}\sqrt{1+\sqrt{\dfrac{1}{2}+\sqrt{\dfrac{1}{3}+\cdots+\sqrt{\dfrac{1}{n}}}}}$$ exists, and find the best estimate limit $A$. It is easy to show that ...
math110's user avatar
  • 93.6k
81 votes
13 answers
8k views

What is an example of a sequence which "thins out" and is finite?

When I talk about my research with non-mathematicians who are, however, interested in what I do, I always start by asking them basic questions about the primes. Usually, they start getting reeled in ...
tomos's user avatar
  • 1,662
81 votes
2 answers
3k views

Visual proof of $\sum_{n=1}^\infty \frac{1}{n^4} = \frac{\pi^4}{90}$?

In his gorgeous paper "How to compute $\sum \frac{1}{n^2}$ by solving triangles", Mikael Passare offers this idea for proving $\sum_{n=1}^\infty \frac{1}{n^2} = \frac{\pi^2}{6}$: Proof of equality ...
VividD's user avatar
  • 16k
80 votes
12 answers
11k views

The limit of truncated sums of harmonic series, $\lim\limits_{k\to\infty}\sum_{n=k+1}^{2k}{\frac{1}{n}}$

What is the sum of the 'second half' of the harmonic series? $$\lim_{k\to\infty}\sum\limits_{n=k+1}^{2k}{\frac{1}{n}} =~ ?$$ More precisely, what is the limit of the above sequence of partial sums?
Daniel Pietrobon's user avatar
80 votes
8 answers
11k views

How to prove this identity $\pi=\sum\limits_{k=-\infty}^{\infty}\left(\frac{\sin(k)}{k}\right)^{2}\;$?

How to prove this identity? $$\pi=\sum_{k=-\infty}^{\infty}\left(\dfrac{\sin(k)}{k}\right)^{2}\;$$ I found the above interesting identity in the book $\bf \pi$ Unleashed. Does anyone knows how to ...
Neves's user avatar
  • 5,627
78 votes
6 answers
13k views

Is there a slowest rate of divergence of a series?

$$f(n)=\sum_{i=1}^n\frac{1}{i}$$ diverges slower than $$g(n)=\sum_{i=1}^n\frac{1}{\sqrt{i}}$$ , by which I mean $\lim_{n\rightarrow \infty}(g(n)-f(n))=\infty$. Similarly, $\ln(n)$ diverges as fast as $...
Meow's user avatar
  • 6,413

15 30 50 per page
1
2 3 4 5
1320