Skip to main content

Questions tagged [sequences-and-series]

For questions concerning sequences and series. Typical questions concern, but are not limited to: identifying sequences, identifying terms, recurrence relations, $\epsilon-N$ proofs of convergence, convergence tests, finding closed forms for sums. For questions on finite sums, use the (summation) tag instead.

860 votes
54 answers
145k views

Different ways to prove $\sum_{k=1}^\infty \frac{1}{k^2}=\frac{\pi^2}{6}$ (the Basel problem)

As I have heard people did not trust Euler when he first discovered the formula (solution of the Basel problem) $$\zeta(2)=\sum_{k=1}^\infty \frac{1}{k^2}=\frac{\pi^2}{6}$$ However, Euler was Euler ...
452 votes
24 answers
91k views

How can I evaluate $\sum_{n=0}^\infty(n+1)x^n$?

How can I evaluate $$\sum_{n=1}^\infty\frac{2n}{3^{n+1}}$$? I know the answer thanks to Wolfram Alpha, but I'm more concerned with how I can derive that answer. It cites tests to prove that it is ...
backus's user avatar
  • 4,735
446 votes
10 answers
30k views

My son's Sum of Some is beautiful! But what is the proof or explanation?

My youngest son is in $6$th grade. He likes to play with numbers. Today, he showed me his latest finding. I call it his "Sum of Some" because he adds up some selected numbers from a series of numbers, ...
haugsire's user avatar
  • 3,441
268 votes
9 answers
35k views

Evaluating $\lim\limits_{n\to\infty} e^{-n} \sum\limits_{k=0}^{n} \frac{n^k}{k!}$

I'm supposed to calculate: $$\lim_{n\to\infty} e^{-n} \sum_{k=0}^{n} \frac{n^k}{k!}$$ By using WolframAlpha, I might guess that the limit is $\frac{1}{2}$, which is a pretty interesting and nice ...
user 1591719's user avatar
  • 44.4k
246 votes
12 answers
48k views

Is there an elementary proof that $\sum \limits_{k=1}^n \frac1k$ is never an integer?

If $n>1$ is an integer, then $\sum \limits_{k=1}^n \frac1k$ is not an integer. If you know Bertrand's Postulate, then you know there must be a prime $p$ between $n/2$ and $n$, so $\frac 1p$ ...
Anton Geraschenko's user avatar
234 votes
6 answers
84k views

When can you switch the order of limits?

Suppose you have a double sequence $\displaystyle a_{nm}$. What are sufficient conditions for you to be able to say that $\displaystyle \lim_{n\to \infty}\,\lim_{m\to \infty}{a_{nm}} = \lim_{m\to \...
asmeurer's user avatar
  • 9,812
198 votes
8 answers
38k views

Are there any series whose convergence is unknown?

Are there any infinite series about which we don't know whether it converges or not? Or are the convergence tests exhaustive, so that in the hands of a competent mathematician any series will ...
pseudosudo's user avatar
  • 2,271
189 votes
10 answers
41k views

Self-Contained Proof that $\sum\limits_{n=1}^{\infty} \frac1{n^p}$ Converges for $p > 1$

To prove the convergence of the p-series $$\sum_{n=1}^{\infty} \frac1{n^p}$$ for $p > 1$, one typically appeals to either the Integral Test or the Cauchy Condensation Test. I am wondering if ...
admchrch's user avatar
  • 2,824
188 votes
28 answers
20k views

Proving the identity $\sum_{k=1}^n {k^3} = \big(\sum_{k=1}^n k\big)^2$ without induction

I recently proved that $$\sum_{k=1}^n k^3 = \left(\sum_{k=1}^n k \right)^2$$ using mathematical induction. I'm interested if there's an intuitive explanation, or even a combinatorial interpretation ...
Fernando Martin's user avatar
183 votes
0 answers
5k views

Sorting of prime gaps

Let $g_i$ be the $i^{th}$ prime gap $p_{i+1}-p_i.$ If we rearrange the sequence $ (g_{n,i})_{i=1}^n$ so that for any finite $n$, if the gaps are arranged from smallest to largest, we have a new ...
daniel's user avatar
  • 10.3k
177 votes
7 answers
9k views

Proof of $\frac{1}{e^{\pi}+1}+\frac{3}{e^{3\pi}+1}+\frac{5}{e^{5\pi}+1}+\ldots=\frac{1}{24}$

I would like to prove that $\displaystyle\sum_{\substack{n=1\\n\text{ odd}}}^{\infty}\frac{n}{e^{n\pi}+1}=\frac1{24}$. I found a solution by myself 10 hours after I posted it, here it is: $$f(x)=\...
danodare's user avatar
  • 1,915
166 votes
27 answers
38k views

Why does the series $\sum_{n=1}^\infty\frac1n$ not converge?

Can someone give a simple explanation as to why the harmonic series $$\sum_{n=1}^\infty\frac1n=\frac 1 1 + \frac 12 + \frac 13 + \cdots $$ doesn't converge, on the other hand it grows very slowly?...
bryn's user avatar
  • 9,804
160 votes
4 answers
10k views

Sum of random decreasing numbers between 0 and 1: does it converge??

Let's define a sequence of numbers between 0 and 1. The first term, $r_1$ will be chosen uniformly randomly from $(0, 1)$, but now we iterate this process choosing $r_2$ from $(0, r_1)$, and so on, so ...
Carlos Toscano-Ochoa's user avatar
154 votes
14 answers
21k views

Why does an argument similiar to 0.999...=1 show 999...=-1?

I accept that two numbers can have the same supremum depending on how you generate a decimal representation. So $2.4999\ldots = 2.5$ etc. Can anyone point me to resources that would explain what the ...
CommonToad's user avatar
  • 1,605
153 votes
33 answers
88k views

Sum of First $n$ Squares Equals $\frac{n(n+1)(2n+1)}{6}$

I am just starting into calculus and I have a question about the following statement I encountered while learning about definite integrals: $$\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$$ I really ...
Nathan Osman's user avatar
  • 1,883

15 30 50 per page
1
2 3 4 5
4394