Skip to main content

Questions tagged [sequences-and-series]

For questions concerning sequences and series. Typical questions concern, but are not limited to: identifying sequences, identifying terms, recurrence relations, $\epsilon-N$ proofs of convergence, convergence tests, finding closed forms for sums. For questions on finite sums, use the (summation) tag instead.

860 votes
54 answers
145k views

Different ways to prove $\sum_{k=1}^\infty \frac{1}{k^2}=\frac{\pi^2}{6}$ (the Basel problem)

As I have heard people did not trust Euler when he first discovered the formula (solution of the Basel problem) $$\zeta(2)=\sum_{k=1}^\infty \frac{1}{k^2}=\frac{\pi^2}{6}$$ However, Euler was Euler ...
452 votes
24 answers
91k views

How can I evaluate $\sum_{n=0}^\infty(n+1)x^n$?

How can I evaluate $$\sum_{n=1}^\infty\frac{2n}{3^{n+1}}$$? I know the answer thanks to Wolfram Alpha, but I'm more concerned with how I can derive that answer. It cites tests to prove that it is ...
backus's user avatar
  • 4,735
446 votes
10 answers
30k views

My son's Sum of Some is beautiful! But what is the proof or explanation?

My youngest son is in $6$th grade. He likes to play with numbers. Today, he showed me his latest finding. I call it his "Sum of Some" because he adds up some selected numbers from a series of numbers, ...
haugsire's user avatar
  • 3,441
268 votes
9 answers
36k views

Evaluating $\lim\limits_{n\to\infty} e^{-n} \sum\limits_{k=0}^{n} \frac{n^k}{k!}$

I'm supposed to calculate: $$\lim_{n\to\infty} e^{-n} \sum_{k=0}^{n} \frac{n^k}{k!}$$ By using WolframAlpha, I might guess that the limit is $\frac{1}{2}$, which is a pretty interesting and nice ...
user 1591719's user avatar
  • 44.4k
246 votes
12 answers
48k views

Is there an elementary proof that $\sum \limits_{k=1}^n \frac1k$ is never an integer?

If $n>1$ is an integer, then $\sum \limits_{k=1}^n \frac1k$ is not an integer. If you know Bertrand's Postulate, then you know there must be a prime $p$ between $n/2$ and $n$, so $\frac 1p$ ...
Anton Geraschenko's user avatar
235 votes
6 answers
84k views

When can you switch the order of limits?

Suppose you have a double sequence $\displaystyle a_{nm}$. What are sufficient conditions for you to be able to say that $\displaystyle \lim_{n\to \infty}\,\lim_{m\to \infty}{a_{nm}} = \lim_{m\to \...
asmeurer's user avatar
  • 9,822
198 votes
8 answers
38k views

Are there any series whose convergence is unknown?

Are there any infinite series about which we don't know whether it converges or not? Or are the convergence tests exhaustive, so that in the hands of a competent mathematician any series will ...
pseudosudo's user avatar
  • 2,271
189 votes
10 answers
41k views

Self-Contained Proof that $\sum\limits_{n=1}^{\infty} \frac1{n^p}$ Converges for $p > 1$

To prove the convergence of the p-series $$\sum_{n=1}^{\infty} \frac1{n^p}$$ for $p > 1$, one typically appeals to either the Integral Test or the Cauchy Condensation Test. I am wondering if ...
admchrch's user avatar
  • 2,824
188 votes
28 answers
20k views

Proving the identity $\sum_{k=1}^n {k^3} = \big(\sum_{k=1}^n k\big)^2$ without induction

I recently proved that $$\sum_{k=1}^n k^3 = \left(\sum_{k=1}^n k \right)^2$$ using mathematical induction. I'm interested if there's an intuitive explanation, or even a combinatorial interpretation ...
Fernando Martin's user avatar
183 votes
0 answers
5k views

Sorting of prime gaps

Let $g_i$ be the $i^{th}$ prime gap $p_{i+1}-p_i.$ If we rearrange the sequence $ (g_{n,i})_{i=1}^n$ so that for any finite $n$, if the gaps are arranged from smallest to largest, we have a new ...
daniel's user avatar
  • 10.3k
177 votes
7 answers
9k views

Proof of $\frac{1}{e^{\pi}+1}+\frac{3}{e^{3\pi}+1}+\frac{5}{e^{5\pi}+1}+\ldots=\frac{1}{24}$

I would like to prove that $\displaystyle\sum_{\substack{n=1\\n\text{ odd}}}^{\infty}\frac{n}{e^{n\pi}+1}=\frac1{24}$. I found a solution by myself 10 hours after I posted it, here it is: $$f(x)=\...
danodare's user avatar
  • 1,915
166 votes
26 answers
38k views

Why does the series $\sum_{n=1}^\infty\frac1n$ not converge?

Can someone give a simple explanation as to why the harmonic series $$\sum_{n=1}^\infty\frac1n=\frac 1 1 + \frac 12 + \frac 13 + \cdots $$ doesn't converge, on the other hand it grows very slowly?...
bryn's user avatar
  • 9,805
160 votes
4 answers
10k views

Sum of random decreasing numbers between 0 and 1: does it converge??

Let's define a sequence of numbers between 0 and 1. The first term, $r_1$ will be chosen uniformly randomly from $(0, 1)$, but now we iterate this process choosing $r_2$ from $(0, r_1)$, and so on, so ...
Carlos Toscano-Ochoa's user avatar
154 votes
14 answers
21k views

Why does an argument similiar to 0.999...=1 show 999...=-1?

I accept that two numbers can have the same supremum depending on how you generate a decimal representation. So $2.4999\ldots = 2.5$ etc. Can anyone point me to resources that would explain what the ...
CommonToad's user avatar
  • 1,605
153 votes
33 answers
88k views

Sum of First $n$ Squares Equals $\frac{n(n+1)(2n+1)}{6}$

I am just starting into calculus and I have a question about the following statement I encountered while learning about definite integrals: $$\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$$ I really ...
Nathan Osman's user avatar
  • 1,883
144 votes
16 answers
11k views

Proving an alternating Euler sum: $\sum_{k=1}^{\infty} \frac{(-1)^{k+1} H_k}{k} = \frac{1}{2} \zeta(2) - \frac{1}{2} \log^2 2$

Let $$A(p,q) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}H^{(p)}_k}{k^q},$$ where $H^{(p)}_n = \sum_{i=1}^n i^{-p}$, the $n$th $p$-harmonic number. The $A(p,q)$'s are known as alternating Euler sums. ...
Mike Spivey's user avatar
  • 55.8k
144 votes
1 answer
6k views

Identification of a curious function

During computation of some Shapley values (details below), I encountered the following function: $$ f\left(\sum_{k \geq 0} 2^{-p_k}\right) = \sum_{k \geq 0} \frac{1}{(p_k+1)\binom{p_k}{k}}, $$ where $...
Yuval Filmus's user avatar
  • 57.3k
141 votes
36 answers
308k views

Proof that $1+2+3+4+\cdots+n = \frac{n\times(n+1)}2$

Why is $1+2+3+4+\ldots+n = \dfrac{n\times(n+1)}2$ $\space$ ?
b1_'s user avatar
  • 1,585
135 votes
7 answers
108k views

Values of $\sum_{n=0}^\infty x^n$ and $\sum_{n=0}^N x^n$

Why does the following hold: \begin{equation*} \displaystyle \sum\limits_{n=0}^{\infty} 0.7^n=\frac{1}{1-0.7} = 10/3\quad ? \end{equation*} Can we generalize the above to $\displaystyle \sum_{n=...
123 votes
18 answers
53k views

Nice proofs of $\zeta(4) = \frac{\pi^4}{90}$?

I know some nice ways to prove that $\zeta(2) = \sum_{n=1}^{\infty} \frac{1}{n^2} = \pi^2/6$. For example, see Robin Chapman's list or the answers to the question "Different methods to compute $\sum_{...
Mike Spivey's user avatar
  • 55.8k
122 votes
4 answers
33k views

Motivation for Ramanujan's mysterious $\pi$ formula

The following formula for $\pi$ was discovered by Ramanujan: $$\frac1{\pi} = \frac{2\sqrt{2}}{9801} \sum_{k=0}^\infty \frac{(4k)!(1103+26390k)}{(k!)^4 396^{4k}}\!$$ Does anyone know how it works, or ...
Nick Alger's user avatar
  • 19.1k
117 votes
1 answer
4k views

Convergence of $\sum_{n=1}^{\infty} \frac{\sin(n!)}{n}$

Is there a way to assess the convergence of the following series? $$\sum_{n=1}^{\infty} \frac{\sin(n!)}{n}$$ From numerical estimations it seems to be convergent but I don't know how to prove it.
Leonardo Massai's user avatar
115 votes
25 answers
17k views

Can an infinite sum of irrational numbers be rational?

Let $S = \sum_ {k=1}^\infty a_k $ where each $a_k$ is positive and irrational. Is it possible for $S$ to be rational, considering the additional restriction that none of the $a_k$'s is a linear ...
User1's user avatar
  • 1,841
115 votes
5 answers
8k views

How to sum this series for $\pi/2$ directly?

The sum of the series $$ \frac{\pi}{2}=\sum_{k=0}^\infty\frac{k!}{(2k+1)!!}\tag{1} $$ can be derived by accelerating the Gregory Series $$ \frac{\pi}{4}=\sum_{k=0}^\infty\frac{(-1)^k}{2k+1}\tag{2} ...
robjohn's user avatar
  • 348k
113 votes
16 answers
48k views

If $(a_n)\subset[0,\infty)$ is non-increasing and $\sum_{n=1}^\infty a_n<\infty$, then $\lim\limits_{n\to\infty}{n a_n} = 0$

I'm studying for qualifying exams and ran into this problem. Show that if $\{a_n\}$ is a nonincreasing sequence of positive real numbers such that $\sum_n a_n$ converges, then $\lim\limits_{n \...
dls's user avatar
  • 4,666
110 votes
6 answers
20k views

Why is a geometric progression called so? [duplicate]

Just curious about why geometric progression is called so. Is it related to geometry?
dark32's user avatar
  • 1,401
108 votes
3 answers
4k views

How prove this nice limit $\lim\limits_{n\to\infty}\frac{a_{n}}{n}=\frac{12}{\log{432}}$

Nice problem: Let $a_{0}=1$ and $$a_{n}=a_{\left\lfloor n/2\right\rfloor}+a_{\left\lfloor n/3 \right\rfloor}+a_{\left\lfloor n/6\right\rfloor}.$$ Show that $$\lim_{n\to\infty}\dfrac{a_{n}}{n}=\...
math110's user avatar
  • 93.6k
104 votes
13 answers
9k views

Limit of sequence in which each term is defined by the average of preceding two terms

We have a sequence of numbers $x_n$ determined by the equality $$x_n = \frac{x_{n-1} + x_{n-2}}{2}$$ The first and zeroth term are $x_1$ and $x_0$.The following limit must be expressed in terms of $...
Ananth Kamath's user avatar
103 votes
4 answers
5k views

A community project: prove (or disprove) that $\sum_{n\geq 1}\frac{\sin(2^n)}{n}$ is convergent

As the title says, I would like to launch a community project for proving that the series $$\sum_{n\geq 1}\frac{\sin(2^n)}{n}$$ is convergent. An extensive list of considerations follows. The ...
Jack D'Aurizio's user avatar
101 votes
1 answer
4k views

Arithmetic-geometric mean of 3 numbers

The arithmetic-geometric mean$^{[1]}$$\!^{[2]}$ of 2 numbers $a$ and $b$ is denoted $\operatorname{AGM}(a,b)$ and defined as follows: $$\text{Let}\quad a_0=a,\quad b_0=b,\quad a_{n+1}=\frac{a_n+b_n}2,...
Vladimir Reshetnikov's user avatar

15 30 50 per page
1
2 3 4 5
2199