Skip to main content

Questions tagged [polylogarithm]

For questions about or related to polylogarithm functions.

17 votes
2 answers
834 views

Sum $\sum^\infty_{n=1}\frac{(-1)^nH_n}{(2n+1)^2}$

I would like to seek your assistance in computing the sum $$\sum^\infty_{n=1}\frac{(-1)^nH_n}{(2n+1)^2}$$ I am stumped by this sum. I have tried summing the residues of $\displaystyle f(z)=\frac{\pi\...
SuperAbound's user avatar
  • 5,604
17 votes
2 answers
894 views

A reason for $ 64\int_0^1 \left(\frac \pi 4+\arctan t\right)^2\cdot \log t\cdot\frac 1{1-t^2}\; dt =-\pi^4$ ...

Question: How to show the relation $$ J:=\int_0^1 \left(\frac \pi 4+\arctan t\right)^2\cdot \log t\cdot\frac 1{1-t^2}\; dt =-\frac 1{64}\pi^4 $$ (using a "minimal industry" of relations, ...
dan_fulea's user avatar
  • 34.2k
17 votes
1 answer
634 views

Polylogarithm ladders for the tribonacci and n-nacci constants

While reading about polylogarithms, I came across the nice polylogarithm ladder, $$6\operatorname{Li}_2(x^{-1})-3\operatorname{Li}_2(x^{-2})-4\operatorname{Li}_2(x^{-3})+\operatorname{Li}_2(x^{-6}) = ...
Tito Piezas III's user avatar
16 votes
5 answers
1k views

Double Euler sum $ \sum_{k\geq 1} \frac{H_k^{(2)} H_k}{k^3} $

I proved the following result $$\displaystyle \sum_{k\geq 1} \frac{H_k^{(2)} H_k}{k^3} =- \frac{97}{12} \zeta(6)+\frac{7}{4}\zeta(4)\zeta(2) + \frac{5}{2}\zeta(3)^2+\frac{2}{3}\zeta(2)^3$$ After ...
Zaid Alyafeai's user avatar
16 votes
3 answers
918 views

How to compute $\sum_{n=1}^\infty\frac{H_n^2}{n^32^n}$?

Can we evaluate $\displaystyle\sum_{n=1}^\infty\frac{H_n^2}{n^32^n}$ ? where $H_n=\sum_{k=1}^n\frac1n$ is the harmonic number. A related integral is $\displaystyle\int_0^1\frac{\ln^2(1-x)\...
Ali Shadhar's user avatar
  • 25.8k
16 votes
2 answers
889 views

Evaluate $ \int_{0}^{1} \log\left(\frac{x^2-2x-4}{x^2+2x-4}\right) \frac{\mathrm{d}x}{\sqrt{1-x^2}} $

Evaluate : $$ \int_{0}^{1} \log\left(\dfrac{x^2-2x-4}{x^2+2x-4}\right) \dfrac{\mathrm{d}x}{\sqrt{1-x^2}} $$ Introduction : I have a friend on another math platform who proposed a summation ...
MathGod's user avatar
  • 5,558
16 votes
2 answers
888 views

Conjecture $\int_0^1\frac{\ln^2\left(1+x+x^2\right)}x dx\stackrel?=\frac{2\pi}{9\sqrt3}\psi^{(1)}(\tfrac13)-\frac{4\pi^3}{27\sqrt3}-\frac23\zeta(3)$

I'm interested in the following definite integral: $$I=\int_0^1\frac{\ln^2\!\left(1+x+x^2\right)}x\,dx.\tag1$$ The corresponding antiderivative can be evaluated with Mathematica, but even after ...
Vladimir Reshetnikov's user avatar
16 votes
2 answers
1k views

Evaluate$\int\limits_0^1 [\log(x)\log(1-x)+\operatorname{Li}_2(x)]\left[\frac{\operatorname{Li}_2(x)}{x(1-x)}-\frac{\zeta(2)}{1-x}\right]\mathrm dx$

The following is from Mathematical Analysis $-$ A collection of Problems by Tolaso J. Kos $($Page $27$, Problem $282$$)$ $$\mathfrak{I}=\int\limits_0^1 \left[\log(x)\log(1-x)+\operatorname{Li}_2(x)\...
mrtaurho's user avatar
  • 16.2k
16 votes
1 answer
641 views

The log integrals $\int_{0}^{1/2} \frac{\log(1+2x) \log(x)}{1+x} \, dx $ and $ \int_{0}^{1/2} \frac{\log(1+2x) \log(1-x)}{1+x} \, dx$

In attempting to evaluate $ \int_{0}^{\infty} [\text{Ei}(-x)]^{4} \, dx$ (which can be evaluated in terms of polylogarithm values), I determined that $$ \begin{align} \int_{0}^{\infty} [\text{Ei}(-x)]...
Random Variable's user avatar
16 votes
1 answer
551 views

Relations connecting values of the polylogarithm $\operatorname{Li}_n$ at rational points

The polylogarithm is defined by the series $$\operatorname{Li}_n(x)=\sum_{k=1}^\infty\frac{x^k}{k^n}.$$ There are relations connecting values of the polylogarithm at certain rational points in the ...
Vladimir Reshetnikov's user avatar
15 votes
3 answers
2k views

Simplification of an expression containing $\operatorname{Li}_3(x)$ terms

In my computations I ended up with this result: $$\mathcal{K}=78\operatorname{Li}_3\left(\frac13\right)+15\operatorname{Li}_3\left(\frac23\right)-64\operatorname{Li}_3\left(\frac15\right)-102 \...
Oksana Gimmel's user avatar
15 votes
2 answers
331 views

How to prove $\int_{0}^{-1} \frac{\operatorname{Li}_2(x)}{(1-x)^2} dx=\frac{\pi^2}{24}-\frac{\ln^2(2)}{2} $

$\def\Li{\operatorname{Li}}$ I wonder how to prove: $$ \int_{0}^{-1} \frac{\Li_2(x)}{(1-x)^2} dx=\frac{\pi^2}{24}-\frac{\ln^2(2)}{2} $$ I'm not used to polylogarithm, so I don't know how to tackle it. ...
Redundant Aunt's user avatar
15 votes
2 answers
928 views

Compute polylog of order $3$ at $\frac{1}{2}$

How to compute the following series: $$\sum_{n=1}^{\infty}\frac{1}{2^nn^3}$$ I am aware this equals polylog of order $3$ at $\frac{1}{2}$ or $\operatorname{Li}_3\left(\frac{1}{2}\right)$, but how ...
Venus's user avatar
  • 11k
15 votes
3 answers
956 views

Compute $\int_0^\infty \frac{\operatorname{Li}_3(x)}{1+x^2}\ dx$

How to evaluate $$\int_0^\infty \frac{\operatorname{Li}_3(x)}{1+x^2}\ dx\ ?$$ where $\displaystyle\operatorname{Li}_3(x)=\sum_{n=1}^\infty\frac{x^n}{n^3}$ , $|x|\leq1$ I came across this integral ...
Ali Shadhar's user avatar
  • 25.8k
15 votes
1 answer
228 views

Simplification of a trilogarithm of a complex argument

Is it possible to simplify the following expression? $$\large\Im\,\operatorname{Li}_3\left(-e^{\xi\,\left(\sqrt3-\sqrt{-1}\right)-\frac{\pi^2}{12\,\xi}\left(\sqrt3+\sqrt{-1}\right)}\right)$$ where $$\...
Marty Colos's user avatar
  • 3,320

15 30 50 per page
1 2 3
4
5
37