Skip to main content

Questions tagged [polylogarithm]

For questions about or related to polylogarithm functions.

1 vote
1 answer
435 views

An integral involving a Gaussian, error functions and the Owen's T function.

This question is closely related to An integral involving a Gaussian and an Owen's T function. and An integral involving error functions and a Gaussian . Let $\nu_1 \ge 1$ and $\nu_2 \ge 1$ be ...
Przemo's user avatar
  • 11.5k
25 votes
4 answers
1k views

Evaluate $\int_{0}^{\pi }\theta ^{3}\log^{3}\left ( 2\sin\frac{\theta }{2} \right )\mathrm{d}\theta $

Evaluate $$\int_{0}^{\pi }\theta ^{3}\log^{3}\left ( 2\sin\frac{\theta }{2} \right )\,\mathrm{d}\theta $$ Several days ago,I found this interesting integral from a paper about generalized log-sine ...
Renascence_5.'s user avatar
21 votes
3 answers
2k views

Evaluate $\int_0^1\arcsin^2(\frac{\sqrt{-x}}{2}) (\log^3 x) (\frac{8}{1+x}+\frac{1}{x}) \, dx$

Here is an interesting integral, which is equivalent to the title $$\tag{1}\int_0^1 \log ^2\left(\sqrt{\frac{x}{4}+1}-\sqrt{\frac{x}{4}}\right) (\log ^3x) \left(\frac{8}{1+x}+\frac{1}{x}\right) \, dx =...
pisco's user avatar
  • 19.1k
18 votes
3 answers
930 views

Closed form for $\int_0^e\mathrm{Li}_2(\ln{x})\,dx$?

Inspired by this question and this answer, I decided to investigate the family of integrals $$I(k)=\int_0^e\mathrm{Li}_k(\ln{x})\,dx,\tag{1}$$ where $\mathrm{Li}_k(z)$ represents the polylogarithm of ...
teadawg1337's user avatar
17 votes
2 answers
834 views

Sum $\sum^\infty_{n=1}\frac{(-1)^nH_n}{(2n+1)^2}$

I would like to seek your assistance in computing the sum $$\sum^\infty_{n=1}\frac{(-1)^nH_n}{(2n+1)^2}$$ I am stumped by this sum. I have tried summing the residues of $\displaystyle f(z)=\frac{\pi\...
SuperAbound's user avatar
  • 5,604
16 votes
5 answers
1k views

Double Euler sum $ \sum_{k\geq 1} \frac{H_k^{(2)} H_k}{k^3} $

I proved the following result $$\displaystyle \sum_{k\geq 1} \frac{H_k^{(2)} H_k}{k^3} =- \frac{97}{12} \zeta(6)+\frac{7}{4}\zeta(4)\zeta(2) + \frac{5}{2}\zeta(3)^2+\frac{2}{3}\zeta(2)^3$$ After ...
Zaid Alyafeai's user avatar
15 votes
3 answers
956 views

Compute $\int_0^\infty \frac{\operatorname{Li}_3(x)}{1+x^2}\ dx$

How to evaluate $$\int_0^\infty \frac{\operatorname{Li}_3(x)}{1+x^2}\ dx\ ?$$ where $\displaystyle\operatorname{Li}_3(x)=\sum_{n=1}^\infty\frac{x^n}{n^3}$ , $|x|\leq1$ I came across this integral ...
Ali Shadhar's user avatar
  • 25.8k
15 votes
3 answers
2k views

Simplification of an expression containing $\operatorname{Li}_3(x)$ terms

In my computations I ended up with this result: $$\mathcal{K}=78\operatorname{Li}_3\left(\frac13\right)+15\operatorname{Li}_3\left(\frac23\right)-64\operatorname{Li}_3\left(\frac15\right)-102 \...
Oksana Gimmel's user avatar
14 votes
5 answers
847 views

Integral $\int^1_0\frac{\ln{x} \ \mathrm{Li}_2(x)}{1-x}dx$

I would like to know how to evaluate the integral $$\int^1_0\frac{\ln{x} \ \mathrm{Li}_2(x)}{1-x}dx$$ I tried expanding the integrand as a series but made little progress as I do not know how to ...
SuperAbound's user avatar
  • 5,604
14 votes
6 answers
3k views

Inverse of the polylogarithm

The polylogarithm can be defined using the power series $$ \operatorname{Li}_s(z) = \sum_{k=1}^\infty {z^k \over k^s}. $$ Contiguous polylogs have the ladder operators $$ \operatorname{Li}_{s+1}(z) ...
Simon's user avatar
  • 1,136
13 votes
2 answers
522 views

On the integral $\int_{0}^{1/2}\frac{\text{Li}_3(1-z)}{\sqrt{z(1-z)}}\,dz$

This questions is related to my previous one. I am interested in a explicit evaluation in terms of Euler sums for $$ \int_{0}^{\pi/4}\text{Li}_3(\cos^2\theta)\,d\theta = \frac{1}{2}\int_{0}^{1/2}\...
Jack D'Aurizio's user avatar
12 votes
1 answer
611 views

More on the integral $\int_0^1\int_0^1\int_0^1\int_0^1\frac{1}{(1+x) (1+y) (1+z)(1+w) (1+ x y z w)} \ dx \ dy \ dz \ dw$

In this post, the OP asks about the integral, $$I = \int_0^1\int_0^1\int_0^1\int_0^1\frac{1}{(1+x) (1+y) (1+z)(1+w) (1+ x y z w)} \ dx \ dy \ dz \ dw$$ I. User DavidH gave a beautiful (albeit long)...
Tito Piezas III's user avatar
11 votes
3 answers
481 views

Closed-form of $\int_0^1 \operatorname{Li}_p(x) \, dx$

While I've studied integrals involving polylogarithm functions I've observed that $$\int_0^1 \operatorname{Li}_p(x) \, dx \stackrel{?}{=} \sum_{k=2}^p(-1)^{p+k}\zeta(k)+(-1)^{p+1},\tag{1}$$ for any ...
user153012's user avatar
  • 12.4k
11 votes
6 answers
478 views

Prove $\int_{0}^{1} \frac{\sin^{-1}(x)}{x} dx = \frac{\pi}{2}\ln2$

I stumbled upon the interesting definite integral \begin{equation} \int\limits_0^1 \frac{\sin^{-1}(x)}{x} dx = \frac{\pi}{2}\ln2 \end{equation} Here is my proof of this result. Let $u=\sin^{-1}(x)$ ...
poweierstrass's user avatar
10 votes
1 answer
991 views

Computing $\int_0^1\frac{\ln^3(1-x)\ln(1+x)}{x}dx$ or $\sum_{n=1}^\infty\frac{H_n^{(4)}}{n2^n}$

Challenging Integral: \begin{align} I=\int_0^1\frac{\ln^3(1-x)\ln(1+x)}{x}dx&=6\operatorname{Li}_5\left(\frac12\right)+6\ln2\operatorname{Li}_4\left(\frac12\right)-\frac{81}{16}\zeta(5)-\frac{21}{...
Ali Shadhar's user avatar
  • 25.8k

15 30 50 per page
1 2
3
4 5
14