Skip to main content

All Questions

14 votes
6 answers
3k views

Inverse of the polylogarithm

The polylogarithm can be defined using the power series $$ \operatorname{Li}_s(z) = \sum_{k=1}^\infty {z^k \over k^s}. $$ Contiguous polylogs have the ladder operators $$ \operatorname{Li}_{s+1}(z) ...
22 votes
4 answers
1k views

Proving $\text{Li}_3\left(-\frac{1}{3}\right)-2 \text{Li}_3\left(\frac{1}{3}\right)= -\frac{\log^33}{6}+\frac{\pi^2}{6}\log 3-\frac{13\zeta(3)}{6}$?

Ramanujan gave the following identities for the Dilogarithm function: $$ \begin{align*} \operatorname{Li}_2\left(\frac{1}{3}\right)-\frac{1}{6}\operatorname{Li}_2\left(\frac{1}{9}\right) &=\frac{{...
20 votes
7 answers
905 views

Calculating $\int_0^{\infty } \left(\text{Li}_2\left(-\frac{1}{x^2}\right)\right)^2 \, dx$

Do you see any fast way of calculating this one? $$\int_0^{\infty } \left(\text{Li}_2\left(-\frac{1}{x^2}\right)\right)^2 \, dx$$ Numerically, it's about $$\approx 111....
0 votes
0 answers
39 views

Relations between Dilogarithms and Imaginary part of Hurwitz-Zeta function

I'm working through a paper that involves a problem concerning the calculation of the Imaginary part of the derivative of the Hurwitz-Zeta function $\zeta_H(z,a)$ with respect to $z$, evaluated at a ...
1 vote
1 answer
59 views

Connection between the polylogarithm and the Bernoulli polynomials.

I have been studying the polylogarithm function and came across its relation with Bernoulli polynomials, as Wikipedia site asserts: For positive integer polylogarithm orders $s$, the Hurwitz zeta ...
2 votes
0 answers
68 views

Help verifying expression involving dilogarithms.

I need help verifying that the following equality holds: $$Li_2(-2-2\sqrt2)+Li_2(3-2\sqrt2)+Li_2(\frac{1}{\sqrt2})-Li_2(-\frac{1}{\sqrt2})-Li_2(2-\sqrt2)-Li_2(-1-\sqrt2)-2Li_2(-3+2\sqrt2)$$ $$=$$ $$\...
3 votes
1 answer
502 views

Generating function of the polylogarithm.

Let $\operatorname{Li}_s(z)$ denote the polylogarithm function $$\operatorname{Li}_s(z) = \sum_{k=1}^\infty \frac{z^k}{k^s}.$$ Does there exists a closed form or a known function which generates the ...
5 votes
1 answer
288 views

Closed forms of the integral $ \int_0^1 \frac{\mathrm{Li}_n(x)}{(1+x)^n} d x $

(This is related to this question). How would one find the closed forms the integral $$ \int_0^1 \frac{\mathrm{Li}_n(x)}{(1+x)^n} d x? $$ I tried using Nielsen Generalized Polylogarithm as mentioned ...
4 votes
0 answers
83 views

Closed form of dilogarithm fucntion involving many arctangents

I am trying to find closed form for this expression: $$ - 2{\text{L}}{{\text{i}}_2}\left( {\frac{1}{3}} \right) - {\text{L}}{{\text{i}}_2}\left( {\frac{1}{6}\left( {1 + i\sqrt 2 } \right)} \right) - {\...
5 votes
1 answer
193 views

Evaluating $\int_{0}^{1}\mathrm{d}x\,\frac{\operatorname{arsinh}{(ax)}\operatorname{arsinh}{(bx)}}{x}$ in terms of polylogarithms

Define the function $\mathcal{I}:\mathbb{R}^{2}\rightarrow\mathbb{R}$ by the definite integral $$\mathcal{I}{\left(a,b\right)}:=\int_{0}^{1}\mathrm{d}x\,\frac{\operatorname{arsinh}{\left(ax\right)}\...
19 votes
3 answers
948 views

Proving that $\int_0^1 \frac{\log^2(x)\tanh^{-1}(x)}{1+x^2}dx=\beta(4)-\frac{\pi^2}{12}G$

I am trying to prove that $$I=\int_0^1 \frac{\log^2(x)\tanh^{-1}(x)}{1+x^2}dx=\beta(4)-\frac{\pi^2}{12}G$$ where $\beta(s)$ is the Dirichlet Beta function and $G$ is the Catalan's constant. I managed ...
2 votes
0 answers
68 views

Evaluating $\int\frac{\log(x+a)}{x}\,dx$ in terms of dilogarithms

As per the title, I evaluated $$\int\frac{\log(x+a)}{x}\,dx$$ And wanted to make sure my solution is correct, and if not, where I went wrong in my process. Here is my work. $$\int\frac{\log(x+a)}{x}\,...
2 votes
1 answer
229 views

Mathematical reasoning to get closed-forms or nice definite integrals from these outputs of Wolfram Alpha

I was thinking about the shape of integrals related with $\zeta(3)$ and Catalan's constant, I am saying those in section 3.1 of this Wikipedia. I was thinking in moments of higher order $x^k$ in the ...
3 votes
1 answer
92 views

Why is $B_{2n}(\frac12+ix)\in\mathbb R$ whenever $x\in\mathbb R$?

I just noticed that $B_{2n}(\frac12+ix)\in\mathbb R$, where: $x\in\mathbb R$, $n\in\mathbb N$, and $B_n(x)$ is the $n$th Bernoulli Polynomial. Why? Is there a simple, slick proof? Does it follow from ...
4 votes
0 answers
81 views

How to derive this polylogarithm identity (involving Bernoulli polynomials)?

How can one derive the following identity, found here, relating the polylogarithm functions to Bernoulli polynomials? $$\operatorname{Li}_n(z)+(-1)^n\operatorname{Li}_n(1/z)=-\frac{(2\pi i)^n}{n!}B_n\!...

15 30 50 per page
1
2 3 4 5
8