Skip to main content

All Questions

25 votes
2 answers
729 views

Definite integral of arcsine over square-root of quadratic

For $a,b\in\mathbb{R}\land0<a\le1\land0\le b$, define $\mathcal{I}{\left(a,b\right)}$ by the integral $$\mathcal{I}{\left(a,b\right)}:=\int_{0}^{a}\frac{\arcsin{\left(2x-1\right)}\,\mathrm{d}x}{\...
David H's user avatar
  • 30.7k
24 votes
2 answers
927 views

Closed-form of $\int_0^1 \operatorname{Li}_3^3(x)\,dx$ and $\int_0^1 \operatorname{Li}_3^4(x)\,dx$

We know a closed-form of the first two powers of the integral of trilogarithm function between $0$ and $1$. From the result here we know that $$I_1=\int_0^1 \operatorname{Li}_3(x)\,dx = \zeta(3)-\frac{...
user153012's user avatar
  • 12.4k
22 votes
2 answers
3k views

Extract real and imaginary parts of $\operatorname{Li}_2\left(i\left(2\pm\sqrt3\right)\right)$

We know that polylogarithms of complex argument sometimes have simple real and imaginary parts, e.g. $$\operatorname{Re}\big[\operatorname{Li}_2\left(i\right)\big]=-\frac{\pi^2}{48},\hspace{1em}\...
OlegK's user avatar
  • 1,928
22 votes
4 answers
1k views

Proving $\text{Li}_3\left(-\frac{1}{3}\right)-2 \text{Li}_3\left(\frac{1}{3}\right)= -\frac{\log^33}{6}+\frac{\pi^2}{6}\log 3-\frac{13\zeta(3)}{6}$?

Ramanujan gave the following identities for the Dilogarithm function: $$ \begin{align*} \operatorname{Li}_2\left(\frac{1}{3}\right)-\frac{1}{6}\operatorname{Li}_2\left(\frac{1}{9}\right) &=\frac{{...
Shobhit Bhatnagar's user avatar
20 votes
7 answers
905 views

Calculating $\int_0^{\infty } \left(\text{Li}_2\left(-\frac{1}{x^2}\right)\right)^2 \, dx$

Do you see any fast way of calculating this one? $$\int_0^{\infty } \left(\text{Li}_2\left(-\frac{1}{x^2}\right)\right)^2 \, dx$$ Numerically, it's about $$\approx 111....
user 1591719's user avatar
  • 44.4k
20 votes
1 answer
603 views

A conjectured identity for tetralogarithms $\operatorname{Li}_4$

I experimentally discovered (using PSLQ) the following conjectured tetralogarithm identity: $$720 \,\text{Li}_4\!\left(\tfrac{1}{2}\right)-2160 \,\text{Li}_4\!\left(\tfrac{1}{3}\right)+2160 \,\text{Li}...
Vladimir Reshetnikov's user avatar
19 votes
3 answers
948 views

Proving that $\int_0^1 \frac{\log^2(x)\tanh^{-1}(x)}{1+x^2}dx=\beta(4)-\frac{\pi^2}{12}G$

I am trying to prove that $$I=\int_0^1 \frac{\log^2(x)\tanh^{-1}(x)}{1+x^2}dx=\beta(4)-\frac{\pi^2}{12}G$$ where $\beta(s)$ is the Dirichlet Beta function and $G$ is the Catalan's constant. I managed ...
Shobhit Bhatnagar's user avatar
18 votes
3 answers
930 views

Closed form for $\int_0^e\mathrm{Li}_2(\ln{x})\,dx$?

Inspired by this question and this answer, I decided to investigate the family of integrals $$I(k)=\int_0^e\mathrm{Li}_k(\ln{x})\,dx,\tag{1}$$ where $\mathrm{Li}_k(z)$ represents the polylogarithm of ...
teadawg1337's user avatar
17 votes
1 answer
634 views

Polylogarithm ladders for the tribonacci and n-nacci constants

While reading about polylogarithms, I came across the nice polylogarithm ladder, $$6\operatorname{Li}_2(x^{-1})-3\operatorname{Li}_2(x^{-2})-4\operatorname{Li}_2(x^{-3})+\operatorname{Li}_2(x^{-6}) = ...
Tito Piezas III's user avatar
16 votes
1 answer
641 views

The log integrals $\int_{0}^{1/2} \frac{\log(1+2x) \log(x)}{1+x} \, dx $ and $ \int_{0}^{1/2} \frac{\log(1+2x) \log(1-x)}{1+x} \, dx$

In attempting to evaluate $ \int_{0}^{\infty} [\text{Ei}(-x)]^{4} \, dx$ (which can be evaluated in terms of polylogarithm values), I determined that $$ \begin{align} \int_{0}^{\infty} [\text{Ei}(-x)]...
Random Variable's user avatar
16 votes
1 answer
551 views

Relations connecting values of the polylogarithm $\operatorname{Li}_n$ at rational points

The polylogarithm is defined by the series $$\operatorname{Li}_n(x)=\sum_{k=1}^\infty\frac{x^k}{k^n}.$$ There are relations connecting values of the polylogarithm at certain rational points in the ...
Vladimir Reshetnikov's user avatar
15 votes
3 answers
2k views

Simplification of an expression containing $\operatorname{Li}_3(x)$ terms

In my computations I ended up with this result: $$\mathcal{K}=78\operatorname{Li}_3\left(\frac13\right)+15\operatorname{Li}_3\left(\frac23\right)-64\operatorname{Li}_3\left(\frac15\right)-102 \...
Oksana Gimmel's user avatar
15 votes
2 answers
928 views

Compute polylog of order $3$ at $\frac{1}{2}$

How to compute the following series: $$\sum_{n=1}^{\infty}\frac{1}{2^nn^3}$$ I am aware this equals polylog of order $3$ at $\frac{1}{2}$ or $\operatorname{Li}_3\left(\frac{1}{2}\right)$, but how ...
Venus's user avatar
  • 11k
15 votes
1 answer
228 views

Simplification of a trilogarithm of a complex argument

Is it possible to simplify the following expression? $$\large\Im\,\operatorname{Li}_3\left(-e^{\xi\,\left(\sqrt3-\sqrt{-1}\right)-\frac{\pi^2}{12\,\xi}\left(\sqrt3+\sqrt{-1}\right)}\right)$$ where $$\...
Marty Colos's user avatar
  • 3,320
15 votes
1 answer
767 views

Known exact values of the $\operatorname{Li}_3$ function

We know some exact values of the trilogarithm $\operatorname{Li}_3$ function. Known real analytic values for $\operatorname{Li}_3$: $\operatorname{Li}_3(-1)=-\frac{3}{4} \zeta(3)$ $\operatorname{Li}...
user153012's user avatar
  • 12.4k

15 30 50 per page
1
2 3 4 5
8