Skip to main content

All Questions

1 vote
0 answers
95 views

Series with power of generalized harmonic number $\displaystyle\sum_{k=1}^{\infty}\left(H_k^{(s)}\right)^n x^k$

It's possible to generalize these series? $$\sum_{k=1}^{\infty}H_k^{(s)}x^k=\frac{\operatorname{Li}_s(x)}{1-x}$$ $$\sum_{k=1}^{\infty}H_k^2 x^k=\frac{\ln(1-x)^2+\operatorname{Li}_2(x)}{1-x}$$ Where: $$...
Math Attack's user avatar
14 votes
2 answers
2k views

Definite Dilogarithm integral $\int^1_0 \frac{\operatorname{Li}_2^2(x)}{x}\, dx $

Prove the following $$\int^1_0 \frac{\operatorname{Li}_2^2(x)}{x}\, dx = -3\zeta(5)+\pi^2 \frac{\zeta(3)}{3}$$ where $$\operatorname{Li}^2_2(x) =\left(\int^x_0 \frac{\log(1-t)}{t}\,dt \right)^2$$
Zaid Alyafeai's user avatar