Skip to main content

All Questions

1 vote
1 answer
79 views

Non-inertial frames in quantum mechanics

In classical physics, non-inertial frames necessitate adjustments to Newton's laws due to acceleration and rotation, yet in general relativity, Einstein successfully incorporates such frames. Why does ...
Vishnu's user avatar
  • 15
1 vote
1 answer
68 views

The square of the center of mass [closed]

In the book Classical Mechanics by Goldstein, there is an exercise related to the square of the position of the center of mass of a free particle. I must prove that $$M^2R^2 = M\sum_i m_ir_i^2 - \...
tajiri_numero_1's user avatar
0 votes
2 answers
90 views

Does relative motion allow for speeds $>c$?

If motion is relative, (so if X was stationary and Y was moving at v m/s, we could think of this as Y being stationary and X moving at -v m/s), could we not create a scenario in which a stationary ...
bbqribs2000's user avatar
0 votes
2 answers
49 views

Properties of the Center of Mass

My students are currently going through the rigid rotor and hydrogen atom unit in their quantum physical chemistry course and I found myself at a loss on how to justify what seems a natural way to ...
Matt Hanson's user avatar
  • 3,202
0 votes
2 answers
74 views

Energy in different coordinates in central force motion

With reference to central force, we see that K.E has 2 terms in 2D cartesian cordinate but just 1 term in polar coordinates and potential energy has 1 term in cartesian but 2 terms in polar. Basically ...
SHINU_MADE's user avatar
0 votes
1 answer
36 views

Doppler shift phenomenon for non-inertia frames

The Doppler shift phenomenon is well understood when the source and observer are in relative constant motion. However, I'm curious to know how the Doppler shift phenomenon is modified when they (i.e., ...
Omid's user avatar
  • 342
0 votes
0 answers
19 views

2d elastic scattering with an impact parameter

Hello guys I have homework that has tasked me with connecting the effect of the scattering parameter to the energy transfer in a 2d elastic collision of two arbitrary spheres with one of them standing ...
bobcat's user avatar
  • 1
1 vote
2 answers
78 views

Why isn't there such a thing as "internal momentum"?

The three most well-known conserved quantities in classical physics are energy, momentum, and angular momentum. Suppose we have a system with no external forces acting on it. We can talk about the ...
Maximal Ideal's user avatar
1 vote
1 answer
49 views

How do physicists determine where to place the world or inertial frame when describing the equation of motion of an object?

For example, I have a pendulum as shown in the diagram above. I would like to write down its equation of motion. To do this, I must define a world frame (or inertial frame, or origin). But this is ...
Olórin's user avatar
  • 320
2 votes
1 answer
89 views

Time derivative of a "general" vector $\vec A$ in an accelerating frame: what about e.g. velocity $\vec v$?

According to Morin "Classical Mechanics" (Section 10.1, page 459), the derivative of a general vector $\vec A$ in an accelerating frame may be given as $$\frac{d\vec A}{dt}=\frac{\delta \vec ...
klonedrekt's user avatar
5 votes
5 answers
2k views

Why is the centre of mass useful in a discrete particle system?

How does the concept of center of mass apply to discrete particle systems with varying masses and motions, especially when dealing with a large number of particles? Considering the challenge of ...
Mathologist's user avatar
1 vote
1 answer
60 views

Question about distribution of mass

I recently began taking my first university-level physics course after having studied quite a bit of pure mathematics. While I think that my math background has helped me grasp some concepts a bit ...
ltoth2's user avatar
  • 11
1 vote
4 answers
219 views

Reference frame doubts about isotropy

Landau & Lifshitz on p.5 in their "Mechanics" book states the following: ...a frame of reference can always be chosen in which space is homogeneous and isotropic and time is homogeneous....
Giorgi Lagidze's user avatar
1 vote
0 answers
36 views

How do 4-vectors change under an "accelerated" Lorentz transformation?

I assume that an observer moving with velocity $\mathbf{v} = v\mathbf{n} = \mathbf{v}(t)$ (with respect to another observer) has coordinates where $x^{\mu}$ are the coordinates for the observer who ...
K. Pull's user avatar
  • 391
0 votes
0 answers
14 views

Reading on weighing scales at the equator of a moon in a tidally locked two-body system

I'm trying a made-up extension of this problem. Consider the planet Mars and its moon Deimos, which can be approximated as meeting the following simplifying conditions: Both objects are perfect ...
Nick_2440's user avatar
  • 208

15 30 50 per page
1
2 3 4 5
14