Skip to main content

All Questions

1 vote
0 answers
38 views

Weird sign in EOM: Centripetal vs. centrifugal term [duplicate]

Something goes wrong when I was deriving the equation of motion in Kepler's probelm, as below, Angular momentum conservation $L = Mr^2\dot{\theta}^2$. And Lagrangian is $L = \frac{1}{2}M(\dot{r}^2 + ...
Ting-Kai Hsu's user avatar
0 votes
1 answer
141 views

Correct Lagrangian for classical central force problem?

Wikipedia gives the following Lagrangian for central force problem: $$\mathcal{L}=\frac12 m \dot{\mathbf{r}}^2-V(r)$$ where $m$ is the mass of a smaller body orbiting around a stationary larger body. ...
user366875's user avatar
0 votes
0 answers
80 views

Substituting the conservation of angular momentum into the Binet formula results in contradiction [duplicate]

Background Information The lagrangian of a particle in a central force field $V(r)$ is $$ L=\frac12m(\dot r^2+r^2\dot\theta^2+r^2\sin^2\theta\dot\varphi^2)-V(r). $$ The particle must move in a plane, ...
Luessiaw's user avatar
  • 675
0 votes
1 answer
149 views

Problem 6.3 from David Morin (classical mechanics) [closed]

I get the lagrangian for the system as $$ \begin{align} \mathscr{L} = \frac{m}{2}(\dot{x}^2 + l^2\dot{\theta}^2 + 2l\dot{x}\dot{\theta}\cos \theta) + mgl\cos\theta \end{align} $$ Where $\theta$ is the ...
fnseedy's user avatar
  • 23
0 votes
2 answers
176 views

Lagrangian of inverted physical pendulum with oscillating base

An inverted physical pendulum is deviated by a small angle $\varphi$ and connected to an oscillating base with oscillation function $a(t)$. The pendulum's mass is $m$ and its center of mass is $l$ ...
herbert123's user avatar
1 vote
1 answer
148 views

Lagrangian formalism for non-inertial reference frames

I was solving the exercise where the massless ring with radius $R$ is rotating around axis (shown in the picture) with angular velocity $\omega$. On the ring is a point-object with mass $m$ which ...
Edward Henry Brenner's user avatar
3 votes
2 answers
121 views

Why are you allowed to omit the $V^2$ term in the non-inertial frame?

I'm trying to find trying to find the Lagrangian and Hamiltonian for a particle in a non-inertial frame, but when I try to do so, I always get a quadratic term, which textbooks like Landau & ...
Pocher's user avatar
  • 57
0 votes
1 answer
419 views

Kinetic Energy of pendulum with moving support

I am trying to calculate the kinetic energy of a pendulum with moving support. I have come across two ways that could be used to calculate the kinetic energy, and although I know that the first of ...
doraviv's user avatar
  • 29
0 votes
2 answers
520 views

Decomposing Lagrangian into CM and relative parts with presence of uniform gravitational field

Most problems concerning two-body motion (using Lagrangian methods) often only consider the motion of two particles subject to no external forces. However, the Lagrangian should be decomposable into ...
Jonathan L.'s user avatar
0 votes
1 answer
102 views

Special relativity v.s. "homogeneous time" within an inertial reference frame

I am asking a conceptual question. As we learned from classical mechanics, say Lagrangian formulation, as stated in Chap 7.9 of Classical Dynamics book by Thornton-Marion (5th Ed) p.260: in our ...
ann marie cœur's user avatar
2 votes
3 answers
2k views

Lagrange Equations for Non-Inertial Frame of Reference

I am trying to expand my limited knowledge of Lagrange's equations for evaluating motion. Regarding the Lagrangian in a rotating coordinate system, the text Mechanics by Symon states "...we use ...
John Darby's user avatar
  • 9,381
0 votes
3 answers
193 views

Having trouble taking derivative of a cross product when finding Lagrangian to find force equation for rotating non-inertial frame

I've been working on a problem for my classical mechanics 2 course and I am stuck on a little math problem. Basically, I am trying to prove this equation of motion with a Lagrangian: $$m\ddot{r} = F + ...
maxxslatt's user avatar
3 votes
1 answer
1k views

Why is total kinetic energy always equal to the sum of rotational and translational kinetic energies?

My derivation is as follows. The total KE, $T_r$ for a rigid object purely rotating about an axis with angular velocity $\bf{ω}$ and with the $i$th particle rotating with velocity $ \textbf{v}_{(rot)...
user avatar
4 votes
4 answers
542 views

Is the numerical value of the Lagrangian conserved, when moving between inertial reference frames?

I am doing a course on Lagrangian mechanics and the instructor mentioned that the numerical value of the Lagrangian is conserved when I shift between two inertial reference frames, even though their ...
newtothis's user avatar
  • 593
1 vote
0 answers
376 views

Rewriting the Lagrangian in terms of the constant(s) of motion doesn't work. Why? (spherical pendulum) [duplicate]

I am trying to solve for the equations of motion to simulate a spherical pendulum. I decided to use the spherical coordinates. The Lagrange equation is, $$ L=T-V=\frac{1}{2}m\left(l\dot\theta\right)^2+...
CondensedChatter's user avatar

15 30 50 per page