Skip to main content

All Questions

1 vote
0 answers
81 views

Closed form for $ \sum_{a_1=0}^\infty~\sum_{a_2=0}^\infty~\cdots~\sum_{a_n=0}^\infty \dfrac1{(a_1!+a_2!+\ldots+a_n!)} $ [closed]

After reading this post and the general solution for that case, I wonder if there is a closed form for the general solution for this sum: $ \sum_{a_1=0}^\infty~\sum_{a_2=0}^\infty~\cdots~\sum_{a_n=0}^\...
user967210's user avatar
0 votes
0 answers
130 views

Calculation of $\sum_{n=1}^{\infty}\frac{\psi_1(n)}{2^nn^2}$

Calculation of $$\sum_{n=1}^{\infty}\frac{\psi_1(n)}{2^nn^2}$$ My attempt \begin{align*} \sum_{n=1}^\infty\frac{\psi_1(n)}{2^n n^2} &= -\sum_{n=1}^\infty\psi_1(n)\left(\frac{\log(2)}{2^n n}+\int_0^...
Mods And Staff Are Not Fair's user avatar
4 votes
2 answers
196 views

How to evaluate this sum $\sum_{n=1}^{\infty} \frac{(-1)^n}{(n^2 + 3n + 1)(n^2 - 3n + 1)}$

How to evaluate this sum $$\sum_{n=1}^{\infty} \frac{(-1)^n}{(n^2 + 3n + 1)(n^2 - 3n + 1)}$$ My attempt $$\sum_{n=1}^{\infty} \frac{(-1)^n}{(n^2 + 3n + 1)(n^2 - 3n + 1)}$$ $$= \sum_{n=1}^{\infty} \...
Mods And Staff Are Not Fair's user avatar
2 votes
2 answers
225 views

Evaluate the infinite product $ \prod_{n=1}^{\infty} \left ( 1 + \frac{x^2}{n^2+n-1} \right )$

Question statement Evaluate the infinite product $$\displaystyle{\prod_{n=1}^{\infty} \left ( 1 + \frac{x^2}{n^2+n-1} \right ) }$$ My try Because of the square of $\displaystyle{x}$ , we can consider $...
Mods And Staff Are Not Fair's user avatar
2 votes
0 answers
67 views

Closed form for $\psi^{1/k}(1)$, where $k$ is an integer

I have proven the identity $$ \sum_{k=1}^{\infty} \dfrac{\operatorname{_2F_1}(1, 2, 2-1/t,-1/k)}{{k}^{2}} = Γ(2-\dfrac{1}t){\psi^{1/t}(1)}+\psi(-\dfrac{1}t)(\dfrac{1}t(1-\dfrac{1}t))+\gamma(1-\dfrac{1}...
Aiden McDonald's user avatar
1 vote
2 answers
205 views

Which closed form expression for this series involving Catalan numbers : $\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{4^nn^2}\binom{2n}{n}$

Obtain a closed-form for the series: $$\mathcal{S}=\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{4^nn^2}\binom{2n}{n}$$ From here https://en.wikipedia.org/wiki/List_of_m ... cal_series we know that for $\...
Mods And Staff Are Not Fair's user avatar
6 votes
4 answers
241 views

Evaluate $\int_{0}^{1}\{1/x\}^2\,dx$

Evaluate $$\displaystyle{\int_{0}^{1}\{1/x\}^2\,dx}$$ Where {•} is fractional part My work $$\displaystyle{\int\limits_0^1 {{{\left\{ {\frac{1}{x}} \right\}}^2}dx} = \sum\limits_{n = 1}^\infty {\...
user avatar
-1 votes
2 answers
96 views

Evaluate $\sum_{m=1}^{\infty} \frac{(-1)^m \mathcal{H}_{2m} }{2m+1} - \frac{1}{2} \sum_ {m=1}^{\infty} \frac{(-1)^m \mathcal{H}_m}{2m+1}$ [duplicate]

Let's declare $\mathcal{G}$ is constant of Catalanand the $\mathcal{H}_m-st$ mharmonic term. Let it be shown that: $$\displaystyle{\sum_{m=1}^{\infty} \frac{(-1)^m \mathcal{H}_{2m} }{2m+1} -\frac{1}{2}...
Mods And Staff Are Not Fair's user avatar
1 vote
2 answers
104 views

Evaluate $\sum_{n=1}^{\infty} (-1)^{n+1} H_n \left( \frac{1}{n+1} - \frac{1}{n+3} + \frac{1}{n+5} - \ldots \right)$

$$\sum_{n=1}^{\infty} (-1)^{n+1} H_n \left( \frac{1}{n+1} - \frac{1}{n+3} + \frac{1}{n+5} - \ldots \right) = \frac{\pi}{16} \cdot \log(2) + \frac{3}{16} \cdot \log(2) - \frac{\pi^2}{192}$$ $$\sum_{k=...
Mods And Staff Are Not Fair's user avatar
3 votes
1 answer
143 views

Show that $\sum_{n=1}^{\infty} \frac{(-1)^n (\psi(n) - \psi(2n))}{n} = \frac{\pi^2}{16} + \left(\frac{\ln(2)}{2}\right)^2$

Show That $$\sum_{n=1}^{\infty} \frac{(-1)^n (\psi(n) - \psi(2n))}{n} =\bbox[15px, #B3E0FF, border: 5px groove #0066CC]{\frac{\pi^2}{16} + \left(\frac{\ln(2)}{2}\right)^2}$$ my work $$\sum_{n=1}^{\...
Mods And Staff Are Not Fair's user avatar
5 votes
3 answers
191 views

Show that $\sum_ {k=1}^{\infty}\dfrac{\zeta(2k)-\zeta(3k)}{k}=\ln\left(\frac{2\cosh\left(\sqrt{3}\pi/2\right)}{3\pi}\right)$

Question $$\zeta(k)=1+\dfrac{1}{2^k}+\dfrac{1}{3^k}+\cdots+\dfrac{1}{n^k}+\cdots$$ Prove that : $$\sum_ {k=1}^{\infty}\dfrac{\zeta(2k)-\zeta(3k)}{k}=\ln\left(\frac{2\cosh\left(\sqrt{3}\pi/2\right)}{...
user avatar
10 votes
3 answers
189 views

Show that $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^2} \sum_{n=1}^k \frac{1}{n}=\frac{5\zeta(3)}{8}$

$$\sum_{k=1}^{\infty} \dfrac{(-1)^{k+1}}{k^2} \sum_{n=1}^k \dfrac{1}{n}=\frac{5\zeta(3)}{8}$$ I tried to create a proof from some lemmas some are suggested by my Senior friends Lemma 1 $$ {H_n} = \sum\...
user avatar
2 votes
0 answers
82 views

Limit : $\lim_{n\to+\infty}a^n(n-\zeta(2)-\zeta(3)-\cdots-\zeta(n))$

question Compute the limit $$\displaystyle{\lim_{n\to+\infty}a^n(n-\zeta(2)-\zeta(3)-\cdots-\zeta(n))}$$, if any, for the various values of the positive real a, where $\zeta$ the zeta function of Mr. ...
Mods And Staff Are Not Fair's user avatar
6 votes
2 answers
185 views

Calculate $\sum\limits_{n = - \infty }^\infty {\frac{{\log \left( {{{\left( {n + \frac{1}{3}} \right)}^2}} \right)}}{{n + \frac{1}{3}}}} $

question: how do we find that: $$ S = \sum\limits_{n = - \infty }^\infty {\frac{{\log \left( {{{\left( {n + \frac{1}{3}} \right)}^2}} \right)}}{{n + \frac{1}{3}}}} $$ I modified the sum $$\sum\...
user avatar
1 vote
3 answers
116 views

Evaluate $\prod_{n\geq2}\left(\frac{4}{e^2}\left(1+\frac{1}{n}\right)^{2n+1}\frac{n^2-1}{4n^2-1}\right)$

$$\prod_{n\geq2}\left(\frac{4}{e^2}\left(1+\frac{1}{n}\right)^{2n+1}\frac{n^2-1}{4n^2-1}\right)$$ I expand $\frac{n^2-1}{4n^2-1}$ as $\frac{(n-1)(n+1)}{(2n-1)(2n+1)}$. Then, $\left(1+\frac{1}{n}\...
user avatar

15 30 50 per page