0
$\begingroup$

Calculation of $$\sum_{n=1}^{\infty}\frac{\psi_1(n)}{2^nn^2}$$

My attempt

\begin{align*} \sum_{n=1}^\infty\frac{\psi_1(n)}{2^n n^2} &= -\sum_{n=1}^\infty\psi_1(n)\left(\frac{\log(2)}{2^n n}+\int_0^{\frac{1}{2}} x^{n-1}\log(x)dx\right) \\ &= \color{green}{-\log(2)\sum_{n=1}^\infty\frac{\psi_1(n)}{2^n n}}\color{blue}{-\int_0^{1\over 2}\frac{\log(x)}{1-x}\left(\zeta(2)-\text{Li}_2(x) \right)dx }\tag{1} \end{align*}

I don’t know how to evaluate $$\log(2)\sum_{n=1}^\infty\frac{\psi_1(n)}{2^n n}$$ and $$-\int_0^{1\over 2}\frac{\log(x)}{1-x}\left(\zeta(2)-\text{Li}_2(x) \right)dx$$

$\endgroup$
4
  • $\begingroup$ May I see the deleted answer? $\endgroup$
    – user1285841
    Commented Feb 20 at 13:28
  • $\begingroup$ Which deleted answer? $\endgroup$ Commented Feb 20 at 19:26
  • $\begingroup$ Kstargamer said the problem was posted by a user named "will byres," who has since been deleted. $\endgroup$
    – user1285841
    Commented Feb 21 at 4:09
  • $\begingroup$ For a different method, we can use \begin{equation} \Psi_n(z)=(-1)^{n+1} n!\left(\zeta(n+1)-H_{z-1}^{(n+1)}\right) \end{equation} $\endgroup$ Commented Feb 21 at 18:01

0

You must log in to answer this question.