Skip to main content

All Questions

15 votes
2 answers
608 views

The inequality $\,2+\sqrt{\frac p2}\leq\sum\limits_\text{cyc}\sqrt{\frac{a^2+pbc}{b^2+c^2}}\,$ where $0\leq p\leq 2$ is: Probably true! Provably true?

Let $p$ be a positive parameter in the range from $0$ to $2$. Can one prove that $$2 +\sqrt{\frac p2} \;\leqslant\;\sqrt{\frac{a^2 + pbc}{b^2+c^2}} \,+\,\sqrt{\frac{b^2 +pca}{c^2+a^2}}\,+\,\sqrt{\...
Hanno's user avatar
  • 6,528
12 votes
2 answers
937 views

$\sum\limits_{i=1}^n \frac{x_i}{\sqrt[n]{x_i^n+(n^n-1)\prod \limits_{j=1}^nx_j}} \ge 1$, for all $x_i>0.$

Can you prove the following new inequality? I found it experimentally. Prove that, for all $x_1,x_2,\ldots,x_n>0$, it holds that $$\sum_{i=1}^n\frac{x_i}{\sqrt[n]{x_i^n+(n^n-1)\prod\limits _{j=...
Hulkster's user avatar
  • 2,040
10 votes
3 answers
718 views

Prove that $\sum\limits_{k=1}^n \frac{1}{k^2+3k+1}$ is bounded above by $\frac{13}{20}$

I want ask a question about a sum. The exercise is as follows: Prove the following inequality for every $n \geq 1$: $$\sum\limits_{k=1}^n \frac{1}{k^2+3k+1} \leq \frac{13}{20} .$$
Maria's user avatar
  • 101
7 votes
1 answer
244 views

Prove that $\frac{1}{1+a_1+a_1a_2}+\frac{1}{1+a_2+a_2a_3}+\cdots+\frac{1}{1+a_{n-1}+a_{n-1}a_n}+\frac{1}{1+a_n+a_na_1}>1.$

If $n > 3$ and $a_1,a_2,\ldots,a_n$ are positive real numbers with $a_1a_2\cdots a_n = 1$, prove that $$\dfrac{1}{1+a_1+a_1a_2}+\dfrac{1}{1+a_2+a_2a_3}+\cdots+\dfrac{1}{1+a_{n-1}+a_{n-1}a_n}+\dfrac{...
user19405892's user avatar
  • 15.6k
7 votes
1 answer
184 views

Show that $|x_{k+1}-x_k| \leq 1$ (for $0<k<n$) implies $\sum_{k=1}^n |x_k| - \left|\sum_{k=1}^n x_k\right|\leq\lceil(n^2-1)/4\rceil$.

Let $n\ge 1$ be a positive integer and let $x_1,\cdots, x_n$ be real numbers so that $|x_{k+1}-x_k|\leq 1$ for $k=1,2,\cdots, n-1$. Show $$\sum_{k=1}^n |x_k| - \left|\sum_{k=1}^n x_k\right|\leq \left\...
user3379's user avatar
  • 1,837
6 votes
3 answers
208 views

Algebraic inequality $\sum \frac{x^3}{(x+y)(x+z)(x+t)}\geq \frac{1}{2}$

The inequality is $$\frac{x^3}{(x+y)(x+z)(x+t)}+\frac{y^3}{(y+x)(y+z)(y+t)}+\frac{z^3}{(z+x)(z+y)(z+t)}+\frac{t^3}{(t+x)(t+y)(t+z)}\geq \frac{1}{2},$$ for $x,y,z,t>0$. It originates from a 3-D ...
JohnnyC's user avatar
  • 1,250
6 votes
5 answers
333 views

Bounds on $S = \frac{1}{1001} + \frac{1}{1002}+ \frac{1}{1003}+\dots+\frac{1}{3001}$

$S = \frac{1}{1001} + \frac{1}{1002}+ \frac{1}{1003}+ \dots+\frac{1}{3001}$. Prove that $\dfrac{29}{27}<S<\dfrac{7}{6}$. My Attempt: $S<\dfrac{500}{1000} + \dfrac{500}{1500}+ \dfrac{...
user avatar
6 votes
2 answers
144 views

How to show $\sum\limits_{r=0}^n \frac{1}{r!} \lt\left (1 + \frac{1}{n}\right)^{n+1}$ for all $n \ge 1$?

Using the binomial expansion, it is quite is easy to show that $$\left(1+\frac{1}{n}\right)^n \le \sum_{r=0}^{n} \frac{1}{r!} $$ for all $n\in\mathbb{Z^+}$, with equality holds when $n=1.$ (Can it be ...
Subhendu Pradhan's user avatar
5 votes
4 answers
110 views

Prove that for every $n \in \mathbb{N}$ $\sum\limits_{k=2}^{n}{\frac{1}{k^2}}<1$ [duplicate]

$$\sum\limits_{k=2}^{n}{\frac{1}{k^2}}<1$$ First step would be proving that the statement is true for n=2 On the LHS for $n=2$ we would have $\frac{1}{4}$ therefore the statement is true for $n=...
Vicente Martinez's user avatar
5 votes
2 answers
364 views

How to find range $a_{75}$ of the term of the series $a_n=a_{n-1}+ {1 \over {a_{n-1}}} $ [duplicate]

If $a_1=1$ and for n>1$$a_n=a_{n-1}+ {1 \over {a_{n-1}}} $$ $a_{75}$ lies between (a) (12,15) (b) (11,12) (c) (15,18) Now , in this question, I rewrote, $a_n-a_{n-1} = {1 \over {a_{n-1}}}$, to ...
Mr.HiggsBoson's user avatar
5 votes
3 answers
450 views

Non-induction proof of $2\sqrt{n+1}-2<\sum_{k=1}^{n}{\frac{1}{\sqrt{k}}}<2\sqrt{n}-1$

Prove that $$2\sqrt{n+1}-2<\sum_{k=1}^{n}{\frac{1}{\sqrt{k}}}<2\sqrt{n}-1.$$ After playing around with the sum, I couldn't get anywhere so I proved inequalities by induction. I'm however ...
Lazar Ljubenović's user avatar
5 votes
2 answers
520 views

Prove that $\sum_{i=1}^n\frac{x_i}{\sqrt[nr]{x_i^{nr}+(n^{nr}-1)\prod_{j=1}^nx^r_j}} \ge 1$ for all $x_i>0$ and $r \geq \frac{1}{n}$.

Prove that, for all $x_1,x_2,\ldots,x_n>0$ and $r \geq \frac{1}{n}$, it holds that $$\sum_{i=1}^n\frac{x_i}{\sqrt[nr]{x_i^{nr}+(n^{nr}-1)\prod \limits_{j=1}^nx^r_j}} \ge 1.$$ This is a slightly ...
Hulkster's user avatar
  • 2,040
4 votes
2 answers
124 views

If $a, b, c, d\in\mathbb R^+, $ then prove that $\displaystyle\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}+\frac{d-a}{a+b}\ge 0.$

My approach: We have: $\displaystyle\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}+\frac{d-a}{a+b}$ $\displaystyle=\frac{a+c}{b+c}-1+\frac{b+d}{c+d}-1+\frac{c+a}{d+a}-1+\frac{d+b}{a+b}-1$ $\...
Dhrubajyoti Bhattacharjee's user avatar
4 votes
1 answer
98 views

Prove the inequality $\sum_{cyc}\frac{a^3}{b\sqrt{a^3+8}}\ge 1$

Let $a,b,c>0$ and such $a+b+c=3$,show that $$\sum_{cyc}\dfrac{a^3}{b\sqrt{a^3+8}}\ge 1\tag{1}$$ I tried using Holder's inequality to solve it: $$\sum_{cyc}\dfrac{a^3}{b\sqrt{a^3+8}}\sum b\sum \...
math110's user avatar
  • 93.6k
3 votes
2 answers
196 views

Inequality $\frac{1}{a+b}+\frac{1}{a+2b}+...+\frac{1}{a+nb}<\frac{n}{\sqrt{a\left( a+nb \right)}}$

Let $a,b\in \mathbb{R+}$ and $n\in \mathbb{N}$. Prove that: $$\frac{1}{a+b}+\frac{1}{a+2b}+...+\frac{1}{a+nb}<\frac{n}{\sqrt{a\left( a+nb \right)}}$$ I have a solution using induction, but ...
whitexlotus's user avatar

15 30 50 per page