Skip to main content

All Questions

5 votes
2 answers
364 views

How to find range $a_{75}$ of the term of the series $a_n=a_{n-1}+ {1 \over {a_{n-1}}} $ [duplicate]

If $a_1=1$ and for n>1$$a_n=a_{n-1}+ {1 \over {a_{n-1}}} $$ $a_{75}$ lies between (a) (12,15) (b) (11,12) (c) (15,18) Now , in this question, I rewrote, $a_n-a_{n-1} = {1 \over {a_{n-1}}}$, to ...
Mr.HiggsBoson's user avatar
12 votes
2 answers
937 views

$\sum\limits_{i=1}^n \frac{x_i}{\sqrt[n]{x_i^n+(n^n-1)\prod \limits_{j=1}^nx_j}} \ge 1$, for all $x_i>0.$

Can you prove the following new inequality? I found it experimentally. Prove that, for all $x_1,x_2,\ldots,x_n>0$, it holds that $$\sum_{i=1}^n\frac{x_i}{\sqrt[n]{x_i^n+(n^n-1)\prod\limits _{j=...
Hulkster's user avatar
  • 2,040
5 votes
3 answers
450 views

Non-induction proof of $2\sqrt{n+1}-2<\sum_{k=1}^{n}{\frac{1}{\sqrt{k}}}<2\sqrt{n}-1$

Prove that $$2\sqrt{n+1}-2<\sum_{k=1}^{n}{\frac{1}{\sqrt{k}}}<2\sqrt{n}-1.$$ After playing around with the sum, I couldn't get anywhere so I proved inequalities by induction. I'm however ...
Lazar Ljubenović's user avatar
6 votes
3 answers
208 views

Algebraic inequality $\sum \frac{x^3}{(x+y)(x+z)(x+t)}\geq \frac{1}{2}$

The inequality is $$\frac{x^3}{(x+y)(x+z)(x+t)}+\frac{y^3}{(y+x)(y+z)(y+t)}+\frac{z^3}{(z+x)(z+y)(z+t)}+\frac{t^3}{(t+x)(t+y)(t+z)}\geq \frac{1}{2},$$ for $x,y,z,t>0$. It originates from a 3-D ...
JohnnyC's user avatar
  • 1,250
3 votes
2 answers
144 views

Prove by induction that $\sum_{i=1}^{2^n} \frac{1}{i} \ge 1+\frac{n}{2}, \forall n \in \mathbb N$

As the title says I need to prove the following by induction: $$\sum_{i=1}^{2^n} \frac{1}{i} \ge 1+\frac{n}{2}, \forall n \in \mathbb N$$ When trying to prove that P(n+1) is true if P(n) is, then I ...
Kat's user avatar
  • 706