4
$\begingroup$

My approach: We have:

$\displaystyle\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}+\frac{d-a}{a+b}$

$\displaystyle=\frac{a+c}{b+c}-1+\frac{b+d}{c+d}-1+\frac{c+a}{d+a}-1+\frac{d+b}{a+b}-1$

$\displaystyle=(c+a)\left(\frac1{b+c}+\frac1{d+a}\right)+(b+d)\left(\frac1{c+d}+\frac1{a+b}\right)-4\ge (c+a) \left(\frac{2\cdot 2}{b+c+d+a}\right)+(b+d)\left(\frac{2\cdot 2}{c+d+a+b}\right)-4$

(on applying AM $\ge$ HM.)

$\displaystyle=\left(\frac4{a+b+c+d}\right) (c+a+b+d)-4=0.$

Hence the inequality.

But I would love to know is there any other elegant method to prove the same? Please mention. Thanks in advance.

$\endgroup$
1
  • 1
    $\begingroup$ This itself is beautiful. $\endgroup$ Commented Jun 12, 2020 at 6:39

2 Answers 2

6
$\begingroup$

We can use C-S one time only: $$\sum_{cyc}\frac{a-b}{b+c}=-4+\sum_{cyc}\left(\frac{a-b}{b+c}+1\right)=-4+\sum_{cyc}\frac{a+c}{b+c}=$$ $$-4+\sum_{cyc}\frac{(a+c)^2}{(b+c)(a+c)}\geq-4+\frac{\left(\sum\limits_{cyc}(a+c)\right)^2}{\sum\limits_{cyc}(b+c)(a+c)}=-4+\frac{4(a+b+c+d)^2}{\sum\limits_{cyc}(ab+ab+ac+a^2)}=0.$$

$\endgroup$
6
  • $\begingroup$ Thanks but will you please explain the step after the $\ge$ sign? $\endgroup$ Commented Jun 12, 2020 at 9:44
  • $\begingroup$ It's Cauchy-Schwarz $\endgroup$ Commented Jun 12, 2020 at 10:32
  • $\begingroup$ Sorry to disturb you again but will you please explicitly mention the two quadruplets that you have taken. $\endgroup$ Commented Jun 12, 2020 at 12:24
  • 1
    $\begingroup$ I used the folloeing C-S $\frac{a_1^2}{b_1}+\frac{a_2^2}{b_2}+\frac{a_3^2}{b_3}+\frac{a_4^2}{b_4}\geq\frac{(a_1+a_2+a_3+a_4)^2}{b_1+b_2+b_3+b_4},$ where $b_i>0$. Here $a_1=a+c$, $a_2=b+d$, $a_3=c+a$, $a_4=d+b$, $b_1=(b+c)(a+c)...$ $\endgroup$ Commented Jun 12, 2020 at 14:06
  • $\begingroup$ Oh Titu's lemma! Got it thanks... $\endgroup$ Commented Jun 12, 2020 at 14:53
0
$\begingroup$

If $a-b\geq b-c \geq c-d \geq d-a$ and $\frac{1}{b+c}\geq \frac{1}{c+d}\geq \frac{1}{d+a}\geq \frac{1}{a+b}$

We can apply Chebyshev's sum inequality to get :

$$\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}+\frac{d-a}{a+b}\geq 0.25(a-b+b-c+c-d+d-a)\Big(\frac{1}{b+c}+ \frac{1}{c+d}+\frac{1}{d+a}+\frac{1}{a+b}\Big)=0$$

For the other cases you can apply rearrangement inequality

$\endgroup$
2
  • 2
    $\begingroup$ What happens if your assumption is not true? $\endgroup$ Commented Jun 12, 2020 at 7:39
  • 2
    $\begingroup$ Can up-voter explain us, why did you do it? $\endgroup$ Commented Jun 12, 2020 at 7:39

You must log in to answer this question.

Not the answer you're looking for? Browse other questions tagged .