Skip to main content

All Questions

3 votes
0 answers
184 views

How to simplify this polylog expression $\operatorname{Li}_4\left(\frac{z-1}{z}\right)$?

Evaluating this integral in Mathematica $$i_2(z)=\int_0^z \frac{\log ^2(x) \log (1-x)}{1-x} \, dx\tag{1}$$ returns a mixture of polylogs up to order 4 and several log-terms. In the region of ...
Dr. Wolfgang Hintze's user avatar
1 vote
1 answer
347 views

Properties of Polylogarithm functions

I have the following expression, $$\mathrm{Li}_3(-e^{+iy})-\mathrm{Li}_3(-e^{-iy})+\left[\mathrm{Li}_4(-e^{-iy})+\mathrm{Li}_4(-e^{+iy})\right],$$ where $0<y<\pi$. I know that this expression ...
Artem Alexandrov's user avatar
4 votes
2 answers
258 views

How to prove $\int_0^\infty e^{-a q} \Gamma (0,q)^2 \, dq = -\frac{1}{a}\left(2 \operatorname{Li}_2(-a-1)+\frac{\pi ^2}{6}\right)$

In my study (https://math.stackexchange.com/a/3392284/198592) of pdfs for the harmonic mean of $n$ independent random variables $x_{i} \sim U(0,1)$ I discovered the lemma $$f_{2}(a) = \int_0^{\infty }...
Dr. Wolfgang Hintze's user avatar
7 votes
2 answers
228 views

On the Clausen triple $8\rm{Cl}_2\left(\frac{\pi}2\right)+3\rm{Cl}_2\left(\frac{\pi}3\right)=12\,\rm{Cl}_2\left(\frac{\pi}6\right)$

While doing research on the Clausen function, I came across this nice identity, $$8\operatorname{Cl}_2\left(\frac{\pi}2\right)+3\operatorname{Cl}_2\left(\frac{\pi}3\right)=12\operatorname{Cl}_2\left(\...
Tito Piezas III's user avatar
6 votes
0 answers
182 views

Generalizing Oksana's trilogarithm relation to $\text{Li}_3(\frac{n}8)$?

This was inspired by Oksana's post. Let, $$a = \ln 2 \quad\quad\\ b = \ln 3\quad\quad\\ c = \ln 5\quad\quad$$ then the following, \begin{align} A &= \text{Li}_3\left(\frac12\right)\\ B &= \...
Tito Piezas III's user avatar
2 votes
1 answer
380 views

Expressions of G-BARNES

All people know expressions G-BARNES FUNCTION for example G(1/2), G(3/2) etc ... or G(1/4), G(3/4). But someone know G(1/8), G(3/8), G(5/8) or G(7/8) in terms of Psi(1,1/8) ? Thanks.
Raptor's user avatar
  • 87
2 votes
0 answers
55 views

Patterns for the polylogarithm $\rm{Li}_m\big(\tfrac12\big)$ and Nielsen polylogarithm $S_{n,p}\big(\tfrac12\big)$?

The polylogarithm $\rm{Li}_m\big(\tfrac12\big)$ has closed-forms known for $m=1,2,3$. It seems this triad pattern extends to the Nielsen generalized logarithm $S_{n,p}\,\big(\tfrac12\big)$ for $n=0,1,...
Tito Piezas III's user avatar
7 votes
3 answers
615 views

Closed-forms for the integral $\int_0^1\frac{\operatorname{Li}_n(x)}{1+x}dx$?

(This is related to this question.) Define the integral, $$I_n = \int_0^1\frac{\operatorname{Li}_n(x)}{1+x}dx$$ with polylogarithm $\operatorname{Li}_n(x)$. Given the Nielsen generalized polylogarithm ...
Tito Piezas III's user avatar
12 votes
1 answer
611 views

More on the integral $\int_0^1\int_0^1\int_0^1\int_0^1\frac{1}{(1+x) (1+y) (1+z)(1+w) (1+ x y z w)} \ dx \ dy \ dz \ dw$

In this post, the OP asks about the integral, $$I = \int_0^1\int_0^1\int_0^1\int_0^1\frac{1}{(1+x) (1+y) (1+z)(1+w) (1+ x y z w)} \ dx \ dy \ dz \ dw$$ I. User DavidH gave a beautiful (albeit long)...
Tito Piezas III's user avatar
5 votes
4 answers
394 views

Integral: $\int_0^1\frac{\mathrm{Li}_2(x^2)}{\sqrt{1-x^2}}dx$

I am trying to evaluate $$P=\frac\pi2\sum_{n\geq1}\frac{{2n\choose n}}{4^n n^2}$$ I used the beta function to show that $$P=\int_0^1\frac{\mathrm{Li}_2(x^2)}{\sqrt{1-x^2}}dx$$ IBP: $$P=\sin^{-1}(x)\...
clathratus's user avatar
  • 17.3k
1 vote
0 answers
81 views

An anti-derivative involving an arc tangent, a square root and a rational function.

This question is similar to A generalized Ahmed's integral . Let $a_1 \in {\mathbb R}_+$, $a_2 \in {\mathbb R}_+$ and $b_1 \in {\mathbb R}_+$. Consider the following integrals: \begin{eqnarray} {\...
Przemo's user avatar
  • 11.5k
14 votes
1 answer
480 views

Yet another difficult logarithmic integral

This question is a follow-up to MSE#3142989. Two seemingly innocent hypergeometric series ($\phantom{}_3 F_2$) $$ \sum_{n\geq 0}\left[\frac{1}{4^n}\binom{2n}{n}\right]^2\frac{(-1)^n}{2n+1}\qquad \...
Jack D'Aurizio's user avatar
13 votes
1 answer
461 views

A logarithmic integral, generalization of a result of Shalev

As many of you are already aware, I and Marco Cantarini are currently working on the applications of fractional operators to hypergeometric series, extending the class of $\phantom{}_{p+1} F_p$s whose ...
Jack D'Aurizio's user avatar
14 votes
1 answer
466 views

A peculiar Euler sum

I would like a hand in the computation of the following Euler sum $$ S=\sum_{m,n\geq 0}\frac{(-1)^{m+n}}{(2m+1)(2n+1)^2(2m+2n+1)} \tag{1}$$ which arises from the computation of $\int_{0}^{1}\frac{\...
Jack D'Aurizio's user avatar
4 votes
0 answers
74 views

Can every Gaussian integral be reduced to elementary functions and poly-logarithms only?

Let us define a following function: \begin{eqnarray} {\mathcal J}^{(d)}(\vec{A}) := \int\limits_0^\infty e^{-u^2} \prod\limits_{\xi=1}^d erf(A_\xi u) du \end{eqnarray} for $\vec{A}:=\left(A_\xi\right)...
Przemo's user avatar
  • 11.5k

15 30 50 per page
1 2
3
4 5
8