Skip to main content

All Questions

1 vote
1 answer
112 views

asymptotic behaviour of polylogarithmic function

I would like to understand the asymptotic behaviour as $a \rightarrow 0$ of the function $$ f(a) := \sum\limits_{k=2}^{\infty} e^{ - a^2 k}{k^{-3/2}} $$ More precisely, I would like to obtain an ...
QuantumLogarithm's user avatar
6 votes
1 answer
285 views

Calculate $\int _0^1\frac{\arcsin ^2\left(x\right)\ln \left(x\right)\ln \left(1-x\right)}{x}\:\mathrm{d}x$

this integral got posted on a mathematics group by a friend $$I=\int _0^1\frac{\arcsin ^2\left(x\right)\ln \left(x\right)\ln \left(1-x\right)}{x}\:\mathrm{d}x$$ I tried seeing what I'd get from ...
logandetner's user avatar
0 votes
1 answer
93 views

$\sum_{i=1}^{n} \frac {x^{2i-1}}{\sqrt{2i}}$ as polylogarithm

$$\sum_{i=1}^{n} \frac {x^{2i-1}}{\sqrt{2i}}$$ It is very clear for me that it has to be polylogarithm function but as it is partial sum I tried to split the series as $$\sum_{i=1}^{\infty} \frac {x^{...
Adolf L.'s user avatar
3 votes
0 answers
316 views

Two tough integrals with logarithms and polylogarithms

The following two integrals are given in (Almost) Impossible Integrals, Sums, and Series (see Sect. $\textbf{1.55}$, page $35$), $$i) \int_0^{\pi/2} \cot (x) \log (\cos (x)) \log ^2(\sin (x)) \...
user97357329's user avatar
  • 5,495
3 votes
1 answer
314 views

Evaluating $\int_0^1\frac{\ln^2(1+x)+2\ln(x)\ln(1+x^2)}{1+x^2}dx$

How to show that $$\int_0^1\frac{\ln^2(1+x)+2\ln(x)\ln(1+x^2)}{1+x^2}dx=\frac{5\pi^3}{64}+\frac{\pi}{16}\ln^2(2)-4\,\text{G}\ln(2)$$ without breaking up the integrand since we already know: $$\int_0^1\...
Ali Shadhar's user avatar
  • 25.8k
0 votes
1 answer
148 views

Evaluate: ${{\int_{0}^{1}\frac{\ln(1+x)^5}{x+2}dx-\int_{0}^{1}\frac{\ln(1+x)^5}{x+3}dx+5\ln2\int_{0}^{1}\frac{\ln(1+x)^4}{x+3}dx}}$

Evaluate: $${{I=\int_{0}^{1}\frac{\ln(1+x)^5}{x+2}dx-\int_{0}^{1}\frac{\ln(1+x)^5}{x+3}dx+5\ln2\int_{0}^{1}\frac{\ln(1+x)^4}{x+3}dx.}}$$ The answer is given below: $$ I=-\frac{7}{12}\pi^4\ln^2(2)-\...
Setness Ramesory's user avatar
1 vote
1 answer
164 views

Integral involving product of dilogarithm and an exponential

I am interested in the integral \begin{equation} \int_0^1 \mathrm{Li}_2 (u) e^{-a^2 u} d u , ~~~~ (\ast) \end{equation} where $\mathrm{Li}_2$ is the dilogarithm. This integral arose in my attempt to ...
o0BlueBeast0o's user avatar
12 votes
2 answers
718 views

General expressions for $\mathcal{L}(n)=\int_{0}^{\infty}\operatorname{Ci}(x)^n\text{d}x$

Define $$\operatorname{Ci}(x)=-\int_{x}^{ \infty} \frac{\cos(y)}{y}\text{d}y.$$ It is easy to show $$ \mathcal{L}(1)=\int_{0}^{\infty}\operatorname{Ci}(x)\text{d}x=0 $$ and $$\mathcal{L}(2)=\int_{0}^{\...
Setness Ramesory's user avatar
10 votes
1 answer
790 views

A generalized "Rare" integral involving $\operatorname{Li}_3$

In my previous post, it can be shown that $$\int_{0}^{1} \frac{\operatorname{Li}_2(-x)- \operatorname{Li}_2(1-x)+\ln(x)\ln(1+x)+\pi x\ln(1+x) -\pi x\ln(x)}{1+x^2}\frac{\text{d}x}{\sqrt{1-x^2} } =\...
Setness Ramesory's user avatar
17 votes
1 answer
1k views

A rare integral involving $\operatorname{Li}_2$

A rare but interesting integral problem: $$\int_{0}^{1} \frac{\operatorname{Li}_2(-x)- \operatorname{Li}_2(1-x)+\ln(x)\ln(1+x)+\pi x\ln(1+x) -\pi x\ln(x)}{1+x^2}\frac{\text{d}x}{\sqrt{1-x^2} } =\...
Setness Ramesory's user avatar
6 votes
1 answer
494 views

Is the closed form of $\int_0^1 \frac{x\ln^a(1+x)}{1+x^2}dx$ known in the literature?

We know how hard these integrals $$\int_0^1 \frac{x\ln(1+x)}{1+x^2}dx; \int_0^1 \frac{x\ln^2(1+x)}{1+x^2}dx; \int_0^1 \frac{x\ln^3(1+x)}{1+x^2}dx; ...$$ can be. So I decided to come up with a ...
Ali Shadhar's user avatar
  • 25.8k
3 votes
1 answer
146 views

Integral representation of Dilogarithm

I have a question regarding how to obtain a certain integral representation of the dilogarithm, namely: $$\DeclareMathOperator{\li}{Li_2}\li(x) = -\int_{0}^{1}\frac{x\ln t}{1-tx}\mathrm dt\quad ,|x|&...
Brian Constantinescu's user avatar
17 votes
2 answers
894 views

A reason for $ 64\int_0^1 \left(\frac \pi 4+\arctan t\right)^2\cdot \log t\cdot\frac 1{1-t^2}\; dt =-\pi^4$ ...

Question: How to show the relation $$ J:=\int_0^1 \left(\frac \pi 4+\arctan t\right)^2\cdot \log t\cdot\frac 1{1-t^2}\; dt =-\frac 1{64}\pi^4 $$ (using a "minimal industry" of relations, ...
dan_fulea's user avatar
  • 34.2k
23 votes
3 answers
2k views

Challenging problem: Calculate $\int_0^{2\pi}x^2 \cos(x)\operatorname{Li}_2(\cos(x))dx$

The following problem is proposed by a friend: $$\int_0^{2\pi}x^2 \cos(x)\operatorname{Li}_2(\cos(x))dx$$ $$=\frac{9}{8}\pi^4-2\pi^3-2\pi^2-8\ln(2)\pi-\frac12\ln^2(2)\pi^2+8\ln(2)\pi G+16\pi\Im\left\{\...
Ali Shadhar's user avatar
  • 25.8k
8 votes
1 answer
497 views

How to evaluate $\int _0^{\pi }x\sin \left(x\right)\operatorname{Li}_2\left(\cos \left(2x\right)\right)\:dx$.

How can i evaluate $$\int _0^{\pi }x\sin \left(x\right)\operatorname{Li}_2\left(\cos \left(2x\right)\right)\:dx$$ $$=\frac{\pi ^3}{6}-\frac{\pi ^3}{6\sqrt{2}}-4\pi +6\pi \ln \left(2\right)-\frac{\pi }...
user avatar
2 votes
4 answers
157 views

Errors are decreasing in series $\sum_{n=1}^\infty(-1)^n/n^4$?

Let $v=\sum_{n=1}^\infty(-1)^n/n^4$ ($v$ for "value"), let $S=(\sum_{n=1}^m(-1)^n/n^4)_{m\in\mathbb Z_{\ge1}}$ be the partial sums, and let $e=(|S_n-v|)_{n\in\mathbb Z_{\ge1}}$ be the errors....
xFioraMstr18's user avatar
6 votes
1 answer
765 views

How to find $\sum_{n=1}^\infty\frac{(-1)^nH_{2n}}{n^3}$ and $\sum_{n=1}^\infty\frac{(-1)^nH_{2n}^{(2)}}{n^2}$ using real methods?

How to calculate $$\sum_{n=1}^\infty\frac{(-1)^nH_{2n}}{n^3}$$ and $$\sum_{n=1}^\infty\frac{(-1)^nH_{2n}^{(2)}}{n^2}$$ by means of real methods? This question was suggested by Cornel the author of the ...
Ali Shadhar's user avatar
  • 25.8k
17 votes
2 answers
1k views

How to approach $\sum _{n=1}^{\infty } \frac{16^n}{n^4 \binom{2 n}{n}^2}$?

@User mentioned in the comments that $$\sum _{n=1}^{\infty } \frac{16^n}{n^3 \binom{2 n}{n}^2}=8\pi\text{G}-14 \zeta (3)\tag1$$ $$\small{\sum _{n=1}^{\infty } \frac{16^n}{n^4 \binom{2 n}{n}^2}=64 \pi ...
Ali Shadhar's user avatar
  • 25.8k
10 votes
4 answers
619 views

How to evaluate $\int_0^{\pi/2} x\ln^2(\sin x)\textrm{d}x$ in a different way?

The following problem \begin{align} &\int_{0}^{\pi/2} x\ln^{2}\left(\sin\left(x\right)\right)\,{\rm d}x \\[5mm] = & \ \frac{1}{2}\ln^{2}\left(2\right)\zeta\left(2\right) - \frac{19}{32}\,\zeta\...
Ali Shadhar's user avatar
  • 25.8k
11 votes
2 answers
728 views

How to compute $\int_0^1\frac{\text{Li}_2(x^2)\arcsin^2(x)}{x}dx$ or $\sum_{n=1}^\infty\frac{4^nH_n}{n^4{2n\choose n}}$

How to tackle $$I=\int_0^1\frac{\text{Li}_2(x^2)\arcsin^2(x)}{x}dx\ ?$$ This integral came up while I was working on finding $\sum_{n=1}^\infty\frac{4^nH_n}{n^4{2n\choose n}}$. First attempt: By ...
Ali Shadhar's user avatar
  • 25.8k
13 votes
3 answers
689 views

How can you approach $\int_0^{\pi/2} x\frac{\ln(\cos x)}{\sin x}dx$

Here is a new challenging problem: Show that $$I=\int_0^{\pi/2} x\frac{\ln(\cos x)}{\sin x}dx=2\ln(2)G-\frac{\pi}{8}\ln^2(2)-\frac{5\pi^3}{32}+4\Im\left\{\text{Li}_3\left(\frac{1+i}{2}\right)\right\}$$...
Ali Shadhar's user avatar
  • 25.8k
9 votes
2 answers
941 views

Evaluating $\int_0^1\frac{\arctan x\ln\left(\frac{2x^2}{1+x^2}\right)}{1-x}dx$

Here is a nice problem proposed by Cornel Valean $$ I=\int_0^1\frac{\arctan\left(x\right)}{1-x}\, \ln\left(\frac{2x^2}{1+x^2}\right)\,\mathrm{d}x = -\frac{\pi}{16}\ln^{2}\left(2\right) - \frac{11}{...
Ali Shadhar's user avatar
  • 25.8k
1 vote
1 answer
111 views

How to compute $\sum_{n=1}^\infty \frac{H_{2n}^2}{n^2}$?

where $H_n$ denotes the harmonic number. I can't see $$\sum_{n\geq 1} \frac{1}{n^2}\left(\int_0^1 \frac{1-x^{2n}}{1-x}\ \mathrm{d}x\right)^2$$ be of any assistance; even $$-\sum_{n\geq 1}H_{2n}^2\...
zalm's user avatar
  • 125
2 votes
1 answer
86 views

Is there a nice way to represent $\sum_{n=1}^\infty \frac{(-1)^{n+1}H_n}{n+m+1}$?

Here, $H_n$ denotes the harmonic number. More colloquially, is there any way to represent $$\int_0^1 x^{n-1}\log^2\left(1+x\right)\ \mathrm{d}x$$ in a nice way? The latter is corollary to the original ...
zalm's user avatar
  • 125
2 votes
1 answer
111 views

Evaluate $\sum_{n\geq1} \frac{(-1)^{n+1}H_n^2}{(n+1)^2}$.

I am looking for a closed for $$\sum_{n\geq1} \frac{(-1)^{n+1}H_n^2}{(n+1)^2}.$$ I believe there is a closed form for the sum as we have seen in [1] which poses as, presumably, a more difficult sum of ...
zalm's user avatar
  • 125
1 vote
2 answers
150 views

How to evaluate $ \sum_{n=1}^\infty \frac{H_n^{(2)}}{n^3}$

I am having a difficult time evaulating $$\sum_{n=1}^\infty \frac{H_n^{(2)}}{n^3}.$$ I have tried the following relation: $$\frac{1}{2}\int_0^1 \frac{\mathrm{Li}_2(x)}{x(1-x)}\log^2{x}\ \mathrm{d}x.$$ ...
user avatar
1 vote
1 answer
256 views

Looking for closed form for $\int_0^1\frac{\log^2x\log\left(1+\frac{1}{x}\right)\log^2\left(1+x\right)}{x\left(1+x\right)}\ \mathrm{d}x$

I was evaluating and integral involving iterated logarithms when the following integral appeared: $$\int_0^1\frac{\log^2x\log\left(1+\frac{1}{x}\right)\log^2\left(1+x\right)}{x\left(1+x\right)}\ \...
user avatar
8 votes
2 answers
270 views

Is there a closed form for $\int_0^1 \binom{1}{x}\frac{\log^2(1-x)}{x}\ \mathrm{d}x$?

Do we know if there is a closed form for $$ I :=\int_0^1 \binom{1}{x}\frac{\log^2(1-x)}{x}\ \mathrm{d}x\mathrm{?} $$ Wolfram alpha gives an approximation of $2.66989$ which may be equivalent to: $$10\...
user avatar
5 votes
2 answers
452 views

Calculating $\int_0^1\frac{1}{1+x}\operatorname{Li}_2\left(\frac{2x}{1+x^2}\right)dx$

How to prove in a simpe way that $$\int_0^1\frac{1}{1+x}\operatorname{Li}_2\left(\frac{2x}{1+x^2}\right)dx=\frac{13}{8}\ln2\zeta(2)-\frac{33}{32}\zeta(3)\ ?$$ where $\operatorname{Li}_2$ is the ...
Ali Shadhar's user avatar
  • 25.8k
2 votes
1 answer
291 views

How to compute $\int_0^1\left(\operatorname{Li}_2(x)-\zeta(2)\right)\frac{\ln^2(1-x^2)}{1-x^2}\ dx$

How to compute $$\int_0^1\left(\operatorname{Li}_2(x)-\zeta(2)\right)\frac{\ln^2(1-x^2)}{1-x^2}\ dx$$ where $\operatorname{Li}_2(x)=\sum_{n=1}^\infty \frac{x^n}{n^2}$ is the dilogarithm function. ...
Ali Shadhar's user avatar
  • 25.8k

15 30 50 per page