Skip to main content

All Questions

6 votes
1 answer
285 views

Calculate $\int _0^1\frac{\arcsin ^2\left(x\right)\ln \left(x\right)\ln \left(1-x\right)}{x}\:\mathrm{d}x$

this integral got posted on a mathematics group by a friend $$I=\int _0^1\frac{\arcsin ^2\left(x\right)\ln \left(x\right)\ln \left(1-x\right)}{x}\:\mathrm{d}x$$ I tried seeing what I'd get from ...
logandetner's user avatar
3 votes
0 answers
316 views

Two tough integrals with logarithms and polylogarithms

The following two integrals are given in (Almost) Impossible Integrals, Sums, and Series (see Sect. $\textbf{1.55}$, page $35$), $$i) \int_0^{\pi/2} \cot (x) \log (\cos (x)) \log ^2(\sin (x)) \...
user97357329's user avatar
  • 5,495
3 votes
1 answer
314 views

Evaluating $\int_0^1\frac{\ln^2(1+x)+2\ln(x)\ln(1+x^2)}{1+x^2}dx$

How to show that $$\int_0^1\frac{\ln^2(1+x)+2\ln(x)\ln(1+x^2)}{1+x^2}dx=\frac{5\pi^3}{64}+\frac{\pi}{16}\ln^2(2)-4\,\text{G}\ln(2)$$ without breaking up the integrand since we already know: $$\int_0^1\...
Ali Shadhar's user avatar
  • 25.8k
12 votes
2 answers
718 views

General expressions for $\mathcal{L}(n)=\int_{0}^{\infty}\operatorname{Ci}(x)^n\text{d}x$

Define $$\operatorname{Ci}(x)=-\int_{x}^{ \infty} \frac{\cos(y)}{y}\text{d}y.$$ It is easy to show $$ \mathcal{L}(1)=\int_{0}^{\infty}\operatorname{Ci}(x)\text{d}x=0 $$ and $$\mathcal{L}(2)=\int_{0}^{\...
Setness Ramesory's user avatar
6 votes
1 answer
494 views

Is the closed form of $\int_0^1 \frac{x\ln^a(1+x)}{1+x^2}dx$ known in the literature?

We know how hard these integrals $$\int_0^1 \frac{x\ln(1+x)}{1+x^2}dx; \int_0^1 \frac{x\ln^2(1+x)}{1+x^2}dx; \int_0^1 \frac{x\ln^3(1+x)}{1+x^2}dx; ...$$ can be. So I decided to come up with a ...
Ali Shadhar's user avatar
  • 25.8k
23 votes
3 answers
2k views

Challenging problem: Calculate $\int_0^{2\pi}x^2 \cos(x)\operatorname{Li}_2(\cos(x))dx$

The following problem is proposed by a friend: $$\int_0^{2\pi}x^2 \cos(x)\operatorname{Li}_2(\cos(x))dx$$ $$=\frac{9}{8}\pi^4-2\pi^3-2\pi^2-8\ln(2)\pi-\frac12\ln^2(2)\pi^2+8\ln(2)\pi G+16\pi\Im\left\{\...
Ali Shadhar's user avatar
  • 25.8k
8 votes
2 answers
270 views

Is there a closed form for $\int_0^1 \binom{1}{x}\frac{\log^2(1-x)}{x}\ \mathrm{d}x$?

Do we know if there is a closed form for $$ I :=\int_0^1 \binom{1}{x}\frac{\log^2(1-x)}{x}\ \mathrm{d}x\mathrm{?} $$ Wolfram alpha gives an approximation of $2.66989$ which may be equivalent to: $$10\...
user avatar
5 votes
2 answers
452 views

Calculating $\int_0^1\frac{1}{1+x}\operatorname{Li}_2\left(\frac{2x}{1+x^2}\right)dx$

How to prove in a simpe way that $$\int_0^1\frac{1}{1+x}\operatorname{Li}_2\left(\frac{2x}{1+x^2}\right)dx=\frac{13}{8}\ln2\zeta(2)-\frac{33}{32}\zeta(3)\ ?$$ where $\operatorname{Li}_2$ is the ...
Ali Shadhar's user avatar
  • 25.8k
8 votes
0 answers
404 views

Powerful Integral $\int_0^x\frac{t\ln(1-t)}{1+t^2}\ dt$

This integral can be found in Cornel's book, (Almost) Impossible Integral, Sums and Series page $97$ where he showed that $$\int_0^x\frac{t\ln(1-t)}{1+t^2}\ dt=\frac14\left(\frac12\ln^2(1+x^2)-2\...
Ali Shadhar's user avatar
  • 25.8k
4 votes
3 answers
686 views

Evaluate $\int\limits_0^\infty \frac{\ln^2(1+x)}{1+x^2}\ dx$

This problem was already solved here (in different closed form). But how can you prove $\ \displaystyle\int\limits_0^\infty\frac{\ln^2(1+x)}{1+x^2}\ dx=2\Im\left(\operatorname{Li}_3(1+i)\right)\ $ ...
Ali Shadhar's user avatar
  • 25.8k
2 votes
0 answers
368 views

Upper bound the Polylogarithm $\sum_{n=1}^\infty \frac{x^n}{n^2}$

Let $x \in (0,1)$ be some real number, we can then consider the Polylogarithm: $$\operatorname{L}_2(x)=\sum_{n=1}^\infty \frac{x^n}{n^2}$$ It is not hard to see that the following upper bound holds: $$...
HolyMonk's user avatar
  • 1,135
9 votes
1 answer
218 views

On the monotony of $-\int_0^1\frac{e^y}{y}(\operatorname{Li}_x(1-y)-\zeta(x)) \,\mathrm dy$

$\def\d{\mathrm{d}}$After I was studying variations of the integral representation for $\zeta(3)$ due to Beukers, see the section More complicated formulas from this Wikipedia, I've thought an ...
user avatar
11 votes
3 answers
561 views

Is the following Harmonic Number Identity true?

Is the following identity true? $$ \sum_{n=1}^\infty \frac{H_nx^n}{n^3} = \frac12\zeta(3)\ln x-\frac18\ln^2x\ln^2(1-x)+\frac12\ln x\left[\sum_{n=1}^\infty\frac{H_{n} x^{n}}{n^2}-\operatorname{Li}_3(...
MathGod's user avatar
  • 5,558
3 votes
1 answer
513 views

Another way of doing integration

What's your option for calculating this integral? No full solution is necessary, it's optional as usual. Calculate $$\int_0^1 \frac{2 \zeta (3)\log ^3(1-x) \text{Li}_2(1-x) }{x}-\frac{2 \zeta (3) \...
user 1591719's user avatar
  • 44.4k
19 votes
3 answers
709 views

Calculating in closed form $\int_0^{\pi/2} \arctan\left(\sin ^3(x)\right) \, dx \ ?$

It's not hard to see that for powers like $1,2$, we have a nice closed form. What can be said about the cubic version, that is $$\int_0^{\pi/2} \arctan\left(\sin ^3(x)\right) \, dx \ ?$$ What are ...
user 1591719's user avatar
  • 44.4k

15 30 50 per page