Skip to main content

All Questions

22 votes
4 answers
1k views

Proving $\text{Li}_3\left(-\frac{1}{3}\right)-2 \text{Li}_3\left(\frac{1}{3}\right)= -\frac{\log^33}{6}+\frac{\pi^2}{6}\log 3-\frac{13\zeta(3)}{6}$?

Ramanujan gave the following identities for the Dilogarithm function: $$ \begin{align*} \operatorname{Li}_2\left(\frac{1}{3}\right)-\frac{1}{6}\operatorname{Li}_2\left(\frac{1}{9}\right) &=\frac{{...
Shobhit Bhatnagar's user avatar
20 votes
4 answers
1k views

Infinite Series $\sum\limits_{n=1}^\infty\frac{H_{2n+1}}{n^2}$

How can I prove that $$\sum_{n=1}^\infty\frac{H_{2n+1}}{n^2}=\frac{11}{4}\zeta(3)+\zeta(2)+4\log(2)-4$$ I think this post can help me, but I'm not sure.
user91500's user avatar
  • 5,626
17 votes
2 answers
894 views

A reason for $ 64\int_0^1 \left(\frac \pi 4+\arctan t\right)^2\cdot \log t\cdot\frac 1{1-t^2}\; dt =-\pi^4$ ...

Question: How to show the relation $$ J:=\int_0^1 \left(\frac \pi 4+\arctan t\right)^2\cdot \log t\cdot\frac 1{1-t^2}\; dt =-\frac 1{64}\pi^4 $$ (using a "minimal industry" of relations, ...
dan_fulea's user avatar
  • 34.2k
6 votes
1 answer
765 views

How to find $\sum_{n=1}^\infty\frac{(-1)^nH_{2n}}{n^3}$ and $\sum_{n=1}^\infty\frac{(-1)^nH_{2n}^{(2)}}{n^2}$ using real methods?

How to calculate $$\sum_{n=1}^\infty\frac{(-1)^nH_{2n}}{n^3}$$ and $$\sum_{n=1}^\infty\frac{(-1)^nH_{2n}^{(2)}}{n^2}$$ by means of real methods? This question was suggested by Cornel the author of the ...
Ali Shadhar's user avatar
  • 25.8k
6 votes
3 answers
691 views

How to find $\sum_{n=1}^{\infty}\frac{H_nH_{2n}}{n^2}$ using real analysis and in an elegant way?

I have already evaluated this sum: \begin{equation*} \sum_{n=1}^{\infty}\frac{H_nH_{2n}}{n^2}=4\operatorname{Li_4}\left( \frac12\right)+\frac{13}{8}\zeta(4)+\frac72\ln2\zeta(3)-\ln^22\zeta(2)+\frac16\...
Ali Shadhar's user avatar
  • 25.8k
16 votes
5 answers
1k views

Double Euler sum $ \sum_{k\geq 1} \frac{H_k^{(2)} H_k}{k^3} $

I proved the following result $$\displaystyle \sum_{k\geq 1} \frac{H_k^{(2)} H_k}{k^3} =- \frac{97}{12} \zeta(6)+\frac{7}{4}\zeta(4)\zeta(2) + \frac{5}{2}\zeta(3)^2+\frac{2}{3}\zeta(2)^3$$ After ...
Zaid Alyafeai's user avatar
4 votes
3 answers
686 views

Evaluate $\int\limits_0^\infty \frac{\ln^2(1+x)}{1+x^2}\ dx$

This problem was already solved here (in different closed form). But how can you prove $\ \displaystyle\int\limits_0^\infty\frac{\ln^2(1+x)}{1+x^2}\ dx=2\Im\left(\operatorname{Li}_3(1+i)\right)\ $ ...
Ali Shadhar's user avatar
  • 25.8k
23 votes
3 answers
2k views

Challenging problem: Calculate $\int_0^{2\pi}x^2 \cos(x)\operatorname{Li}_2(\cos(x))dx$

The following problem is proposed by a friend: $$\int_0^{2\pi}x^2 \cos(x)\operatorname{Li}_2(\cos(x))dx$$ $$=\frac{9}{8}\pi^4-2\pi^3-2\pi^2-8\ln(2)\pi-\frac12\ln^2(2)\pi^2+8\ln(2)\pi G+16\pi\Im\left\{\...
Ali Shadhar's user avatar
  • 25.8k
17 votes
2 answers
1k views

How to approach $\sum _{n=1}^{\infty } \frac{16^n}{n^4 \binom{2 n}{n}^2}$?

@User mentioned in the comments that $$\sum _{n=1}^{\infty } \frac{16^n}{n^3 \binom{2 n}{n}^2}=8\pi\text{G}-14 \zeta (3)\tag1$$ $$\small{\sum _{n=1}^{\infty } \frac{16^n}{n^4 \binom{2 n}{n}^2}=64 \pi ...
Ali Shadhar's user avatar
  • 25.8k
11 votes
2 answers
728 views

How to compute $\int_0^1\frac{\text{Li}_2(x^2)\arcsin^2(x)}{x}dx$ or $\sum_{n=1}^\infty\frac{4^nH_n}{n^4{2n\choose n}}$

How to tackle $$I=\int_0^1\frac{\text{Li}_2(x^2)\arcsin^2(x)}{x}dx\ ?$$ This integral came up while I was working on finding $\sum_{n=1}^\infty\frac{4^nH_n}{n^4{2n\choose n}}$. First attempt: By ...
Ali Shadhar's user avatar
  • 25.8k
11 votes
2 answers
927 views

Two powerful alternating sums $\sum_{n=1}^\infty\frac{(-1)^nH_nH_n^{(2)}}{n^2}$ and $\sum_{n=1}^\infty\frac{(-1)^nH_n^3}{n^2}$

where $H_n$ is the harmonic number and can be defined as: $H_n=1+\frac12+\frac13+...+\frac1n$ $H_n^{(2)}=1+\frac1{2^2}+\frac1{3^2}+...+\frac1{n^2}$ these two sums are already solved by Cornel using ...
Ali Shadhar's user avatar
  • 25.8k
10 votes
1 answer
790 views

A generalized "Rare" integral involving $\operatorname{Li}_3$

In my previous post, it can be shown that $$\int_{0}^{1} \frac{\operatorname{Li}_2(-x)- \operatorname{Li}_2(1-x)+\ln(x)\ln(1+x)+\pi x\ln(1+x) -\pi x\ln(x)}{1+x^2}\frac{\text{d}x}{\sqrt{1-x^2} } =\...
Setness Ramesory's user avatar
6 votes
1 answer
494 views

Is the closed form of $\int_0^1 \frac{x\ln^a(1+x)}{1+x^2}dx$ known in the literature?

We know how hard these integrals $$\int_0^1 \frac{x\ln(1+x)}{1+x^2}dx; \int_0^1 \frac{x\ln^2(1+x)}{1+x^2}dx; \int_0^1 \frac{x\ln^3(1+x)}{1+x^2}dx; ...$$ can be. So I decided to come up with a ...
Ali Shadhar's user avatar
  • 25.8k
1 vote
1 answer
164 views

Integral involving product of dilogarithm and an exponential

I am interested in the integral \begin{equation} \int_0^1 \mathrm{Li}_2 (u) e^{-a^2 u} d u , ~~~~ (\ast) \end{equation} where $\mathrm{Li}_2$ is the dilogarithm. This integral arose in my attempt to ...
o0BlueBeast0o's user avatar
29 votes
7 answers
1k views

Prove that $\int_0^1 \frac{{\rm{Li}}_2(x)\ln(1-x)\ln^2(x)}{x} \,dx=-\frac{\zeta(6)}{3}$

I have spent my holiday on Sunday to crack several integral & series problems and I am having trouble to prove the following integral \begin{equation} \int_0^1 \frac{{\rm{Li}}_2(x)\ln(1-x)\ln^2(...
Anastasiya-Romanova 秀's user avatar

15 30 50 per page