Skip to main content

All Questions

20 votes
3 answers
908 views

Conjecture $\Re\,\operatorname{Li}_2\left(\frac12+\frac i6\right)=\frac{7\pi^2}{48}-\frac13\arctan^22-\frac16\arctan^23-\frac18\ln^2(\tfrac{18}5)$

I numerically discovered the following conjecture: $$\Re\,\operatorname{Li}_2\left(\frac12+\frac i6\right)\stackrel{\color{gray}?}=\frac{7\pi^2}{48}-\frac{\arctan^22}3-\frac{\arctan^23}6-\frac18\ln^2\!...
Vladimir Reshetnikov's user avatar
22 votes
2 answers
3k views

Extract real and imaginary parts of $\operatorname{Li}_2\left(i\left(2\pm\sqrt3\right)\right)$

We know that polylogarithms of complex argument sometimes have simple real and imaginary parts, e.g. $$\operatorname{Re}\big[\operatorname{Li}_2\left(i\right)\big]=-\frac{\pi^2}{48},\hspace{1em}\...
OlegK's user avatar
  • 1,928
17 votes
2 answers
894 views

A reason for $ 64\int_0^1 \left(\frac \pi 4+\arctan t\right)^2\cdot \log t\cdot\frac 1{1-t^2}\; dt =-\pi^4$ ...

Question: How to show the relation $$ J:=\int_0^1 \left(\frac \pi 4+\arctan t\right)^2\cdot \log t\cdot\frac 1{1-t^2}\; dt =-\frac 1{64}\pi^4 $$ (using a "minimal industry" of relations, ...
dan_fulea's user avatar
  • 34.2k
16 votes
5 answers
1k views

Double Euler sum $ \sum_{k\geq 1} \frac{H_k^{(2)} H_k}{k^3} $

I proved the following result $$\displaystyle \sum_{k\geq 1} \frac{H_k^{(2)} H_k}{k^3} =- \frac{97}{12} \zeta(6)+\frac{7}{4}\zeta(4)\zeta(2) + \frac{5}{2}\zeta(3)^2+\frac{2}{3}\zeta(2)^3$$ After ...
Zaid Alyafeai's user avatar
4 votes
1 answer
347 views

On a property of polylogarithm

I have an observation, and I don't know that the following statement is true or not. If not give a counterexample, if it is true prove it, or give a reference about it. Let $n \in \mathbb{R}$, $z \in ...
user153012's user avatar
  • 12.4k
2 votes
1 answer
686 views

Calculate a $\operatorname{Li}_{2}(-1)$ using Integral Representation

$\newcommand{LogI}{\operatorname{Li}}$ I know that $\LogI_{2}(-1)=-\frac{\pi^2}{12}$, but I have never seen a proof of this result without using a functional identity of the Dilogarithm or a series ...
Biggs's user avatar
  • 436
2 votes
2 answers
797 views

Branch Points of the Polylog function

The polylogarithm $$ {\rm Li}_s(z) = \sum_{n=1}^\infty \frac{z^n}{n^s} $$ has obvious branch points at $z=1$. For integers $s\leq 0$ it is a rational function with a pole of order $1-s$ at $z=1$. If $...
Diger's user avatar
  • 6,277
5 votes
1 answer
753 views

On what domain is the dilogarithm analytic?

The series $\displaystyle\sum \dfrac{z^n}{n^2}$ converges for $\lvert z\rvert<1$ by the ratio test, meaning that the dilogarithm function $\text{Li}_2(z),$ which is equal to the series $\...
ziggurism's user avatar
  • 16.9k
8 votes
2 answers
2k views

Find the derivative of a polylogarithm function

I was trying to find to which function the next series converges. $$ \sum_{n=1}^{\infty} \ln(n)z^n $$ If we take the polylogarithm function $Li_s(z)$ defined as $$ Li_s(s)=\sum_{n=1}^{\infty} \frac{z^...
Alonso Delfín's user avatar
3 votes
2 answers
304 views

Jump of dilogarithm

I am reading about the dilogarithm function $$ \mathrm{Li}_2(z):= - \int_0^z \frac{\log(1-u)}{u}du, \quad z \in \mathbb{C} \backslash [1, \infty).$$ I found it stated that the "jump" of the ...
57Jimmy's user avatar
  • 6,326
3 votes
2 answers
416 views

Imaginary part of dilogarithm

I have evaluated a certain real-valued, finite integral with no general elementary solution, but which I have been able to prove equals the imaginary part of some dilogarithms and can write in the ...
user47363's user avatar
2 votes
1 answer
311 views

Real Part of the Dilogarithm

It is well known that $$\frac{x-\pi}{2}=-\sum_{k\geq 1}\frac{\sin{kx}}{k}\forall x\in(0,\tau),$$ which gives $$\frac{x^2}{4}-\frac{\pi x}{2}+\frac{\pi^2}{6}=\sum_{k\geq 1}\frac{\cos(kx)}{k^2}.$$ ...
46andpi's user avatar
  • 158
1 vote
1 answer
59 views

Connection between the polylogarithm and the Bernoulli polynomials.

I have been studying the polylogarithm function and came across its relation with Bernoulli polynomials, as Wikipedia site asserts: For positive integer polylogarithm orders $s$, the Hurwitz zeta ...
Dr Potato's user avatar
  • 812