1
$\begingroup$

$$ \mbox{If}\quad s_{n} = \sum_{k = 0}^{n}\left(-4\right)^{k} \binom{n + k}{2k},\quad\mbox{how to prove}\quad s_{n + 1} + 2s_{n} + s_{n - 1} = 0\ ?. $$

  • One of my student had this question in his exam.
  • Honestly to speak I couldn't get any single idea how to even start.
  • I knew some strategies to find binomial sums but they all couldn't help.

It would be great if someone helps.

$\endgroup$
2
  • $\begingroup$ Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc. $\endgroup$
    – D S
    Commented Mar 12 at 14:37
  • $\begingroup$ Can you calculate $s_1, s_2, s_3$? FWIW I do not get $s_3 - 2 s_2 + s_1 = 0$. $\endgroup$
    – Calvin Lin
    Commented Mar 12 at 16:01

2 Answers 2

4
$\begingroup$

Let us prove a stronger result: for $n\ge1$ $$ s_n=\sum_{k=0}^{n}(-4)^k\binom{n+k}{2k}=(-1)^n(2n+1),\quad\tag1 c_n=\sum_{k=0}^{n}(-4)^k\binom{n+k-1}{2k-1}=(-1)^n 4n. $$

Indeed for $n=1$ the formula $(1)$ is valid as can be easily checked. Assume it is valid for some $n\ge1$. Then it is valid for $n+1$ as well: $$ \begin{align} c_{n+1}&=\sum_{k=0}^{n+1}(-4)^k\binom{n+k}{2k-1}\\ &=\sum_{k=0}^{n+1}(-4)^k\left[\binom{n+k-1}{2k-1}+\binom{n+k-1}{2k-2}\right]\\ &=c_n-4s_n\\& =(-1)^n4n-(-1)^{n}4(2n+1)\\ &=(-1)^{n+1}4(n+1);\\ \vphantom{X}\\ s_{n+1}&=\sum_{k=0}^{n+1}(-4)^k\binom{n+1+k}{2k}\\ &=\sum_{k=0}^{n+1}(-4)^k\left[\binom{n+k}{2k}+\binom{n+k}{2k-1}\right]\\ &=s_n+c_{n+1}\\& =(-1)^n(2n+1)+(-1)^{n+1}4(n+1)\\ &=(-1)^{n+1}(2(n+1)+1). \end{align}$$

Thus by induction the formula $(1)$ is proved. The original statement is a trivial corollary.

$\endgroup$
4
  • $\begingroup$ Thanku so much. Yes there is a correction in question statement. Really a nice proof. Even to prove by induction it's hard to guess the formula first. $\endgroup$
    – YBR
    Commented Mar 13 at 17:46
  • $\begingroup$ @YBR I have just computed a couple of first terms to see the simple pattern. $\endgroup$
    – user
    Commented Mar 13 at 21:56
  • $\begingroup$ 👏👍thank you. That will be doable and good. $\endgroup$
    – YBR
    Commented Mar 14 at 3:42
  • $\begingroup$ In fact if one assumes that $s_{n+1}+2s_n+s_{n-1}=0$ is correct it immediately follows that $s_n=(-1)^n(a n+b)$ and it remains only to find $a$ and $b$. For this task two first values suffice. $\endgroup$
    – user
    Commented Mar 15 at 9:34
3
+50
$\begingroup$

This answer proves that $s_{n+1}+2s_n+s_{n-1}=0$ without proving that $s_n=(-1)^n(2n+1)$. (user's answer is helpful.)

First, we have $$\begin{align}s_{n+1}&=\sum_{k=0}^{n+1}(-4)^k\binom{n+1+k}{2k} \\\\&=\sum_{k=0}^{n+1}(-4)^k\bigg(\binom{n+k}{2k}+\binom{n+k}{2k-1}\bigg) \\\\&=\sum_{k=0}^{\color{red}{n+1}}(-4)^k\binom{n+k}{2k}+\sum_{k=0}^{n+1}(-4)^k\binom{n+k}{2k-1} \\\\&=\sum_{k=0}^{\color{red}n}(-4)^k\binom{n+k}{2k}+\sum_{k=0}^{n+1}(-4)^k\binom{n+k}{2k-1} \\\\&=s_n+\sum_{k=0}^{n+1}(-4)^k\binom{n+k}{2k-1}\end{align}$$

So, we obtain $$\sum_{k=0}^{n+1}(-4)^k\binom{n+k}{2k-1}=s_{n+1}-s_n\tag1$$

Also, we have $$\begin{align}&\sum_{k=0}^{n+1}(-4)^k\binom{n+k}{2k-1}\\\\&=\sum_{k=0}^{n+1}(-4)^k\bigg(\binom{n+k-1}{2k-1}+\binom{n+k-1}{2k-2}\bigg) \\\\&=\sum_{k=0}^{\color{red}{n+1}}(-4)^k\binom{n+k-1}{2k-1}+\sum_{k=\color{blue}0}^{n+1}(-4)^k\binom{n+k-1}{2k-2} \\\\&=\sum_{k=0}^{\color{red}n}(-4)^k\binom{n+k-1}{2k-1}+\sum_{k=\color{blue}1}^{n+1}(-4)^{k}\binom{n+k-1}{2k-2} \\\\&=\sum_{k=0}^{n}(-4)^k\binom{n+k-1}{2k-1}-4\sum_{k=1}^{n+1}(-4)^{k-1}\binom{n+k-1}{2k-2} \\\\&\operatorname*{=}_{\color{red}{j=k-1}}\sum_{k=0}^{n}(-4)^k\binom{n+k-1}{2k-1}-4\sum_{j=0}^{n}(-4)^{j}\binom{n+j}{2j} \\\\&=\sum_{k=0}^{n}(-4)^{k}\binom{n-1+k}{2k-1}-4s_n\end{align}$$

So, we obtain $$\sum_{k=0}^{n+1}(-4)^k\binom{n+k}{2k-1}=\sum_{k=0}^{n}(-4)^{k}\binom{n-1+k}{2k-1}-4s_n\tag2$$

Therefore, it follows from $(1)(2)$ that $$s_{n+1}-s_n=(s_{n}-s_{n-1})-4s_n$$ from which we finally get $$s_{n+1}+2s_n+s_{n-1}=0$$

$\endgroup$
2
  • $\begingroup$ Thanks Mathlove for Nice Explanation. Can u please explain me How we get $\displaystyle s_{n}=(-1)^n(2n+1)$ without using Induction. $\endgroup$
    – DXT
    Commented Mar 28 at 18:29
  • 1
    $\begingroup$ @DXT : We already have $s_{n+1}+2s_n+s_{n-1}=0$ which can be written as $s_{n+1}+s_n=-(s_n+s_{n-1})$, so we get $s_{n+1}+s_n=(-1)^{n-1}(s_2+s_1)=2(-1)^{n-1}$. Dividing the both sides by $(-1)^{n+1}$ gives $t_{n+1}-t_n=2$ where $t_n=\frac{s_n}{(-1)^n}$. So, we get $t_n-t_1=2(n-1)$ which implies that $s_n=(-1)^nt_n=(-1)^n(2n+1)$. $\endgroup$
    – mathlove
    Commented Mar 29 at 5:44

You must log in to answer this question.

Not the answer you're looking for? Browse other questions tagged .