2
$\begingroup$

I want to show that for each $n \geq 1$ it holds that:

$$2^{n-1} F_n \equiv n \pmod{5}$$

where $F_n$ is the $n$-th Fibonacci number.

Could you give a hint how we can show this?

The sequence $F_n$ of Fibonacci numbers is defined by the recurrence relation:

$$F_n=F_{n-1}+F_{n-2} \\ F_1=1, F_2=1.$$

Right? Do we use the definion in order to get to the desired result?

$\endgroup$
1
  • 6
    $\begingroup$ "Do we use the definion in order to get to the desired result?" Of course we do. Clearly this result doesn't hold for all sequences, so in order to prove it, we have to use the fact that our sequence is the Fibonacci sequence and not some other arbitrary sequence. That means we absolutely can't avoid using the definition, either directly or implicitly. $\endgroup$
    – Arthur
    Commented Oct 28, 2018 at 9:56

3 Answers 3

5
$\begingroup$

By induction over $n$, the base cases $n=1,2$ are trivial.

$$\begin{align} 2^{k} F_{k+1} &= 2^k(F_k+F_{k-1})\\ &= 2^kF_k+2^kF_{k-1} \\ &\equiv 2k+4(k-1) \pmod{5}\\ &\equiv k+1 \pmod{5} \end{align}$$

$\endgroup$
0
3
$\begingroup$

$$2^{n-1}F_n=2^{n-1}(F_{n-1}+F_{n-2})=2(2^{n-2}F_{n-1})+4(2^{n-3}F_{n-2}) \\\equiv 2(n-1)+4(n-2) \equiv 6n-10\equiv n\mod5.$$

Also,

$$2^{1-1}F_1=1\equiv 1$$ and

$$2^{2-1}F_2=2\equiv 2.$$

$\endgroup$
0
3
$\begingroup$

Use the general term formula: $$2^{n-1} F_n \equiv 2^{n-1}\cdot \frac{\phi^n-\psi^n}{\sqrt{5}} \equiv \frac{(1+\sqrt{5})^n-(1-\sqrt{5})^n}{2\sqrt{5}} \equiv\\ \frac{2{n\choose 1}\sqrt{5}+2{n\choose 3}(\sqrt{5})^3+2{n\choose 5}(\sqrt{5})^5+\cdots +2{n\choose 2\lfloor{\frac{n-1}{2}\rfloor}+1}(\sqrt{5})^{2\lfloor{\frac{n-1}{2}\rfloor}+1}}{2\sqrt{5}}\equiv\\ n+{n\choose 3}\cdot 5+{n\choose 5}\cdot 5^2+\cdots +{n\choose 2\lfloor{\frac{n-1}{2}\rfloor}+1}\cdot 5^{\lfloor{\frac{n-1}{2}\rfloor}}\equiv n \pmod{5}.$$

$\endgroup$

You must log in to answer this question.

Not the answer you're looking for? Browse other questions tagged .