10
\$\begingroup\$

Please pardon all of the information that precedes the question -- I didn't want you to actually have to go read the paper itself. This question is in two parts, but they are really equivalent, so it's really just one question.

This question refers to this 2003 paper, "Balanced Switching Converter to Reduce Common-Mode Conducted Noise" by Masahito Shoyama, Member, IEEE, Ge Li, and Tamotsu Ninomiya, Fellow, IEEE

https://ieeexplore.ieee.org/iel5/41/28070/01254613.pdf and also an earlier version of the paper that can be found here, for those who don't have IEEE membership.

Here is the abstract:

Because conventional switching converters have usually used unbalanced circuit topologies, parasitic capacitance between the drain/collector of an active switch and the frame ground through its heat sink may generate the common-mode conducted noise. This paper proposes a balanced switching converter circuit, which is an effective way to reduce the common-mode conducted noise. As an example, a boost converter version of the balanced switching converter is presented, and the mechanism of the common-mode noise reduction is explained using an equivalent circuit. This good feature is confirmed by experimental results. The concept of the balanced switching converter is applied to some other types of switching converters.

and here is figure 1A and 1B:

Fig 1A, Simplified Boost converter

Fig 1B, Balanced Simplified Boost Converter with Coupled Inductor

Fig. 1. Concept of the balanced switching converter circuit applied to boost converter. (a) Conventional unbalanced boost converter. (b) Proposed balanced boost converter.

Also, here is how they are measuring the improvement:

Measuring circuits for both unbalanced boost and balanced boost

In the article, diodes aren't really mentioned, and this is one reason why I question whether balanced diodes are really called for.

I understand that the coupled inductor is beneficial when trying to reduce EMI, but I question whether adding the balancing diode is really beneficial enough to justify the reduction in efficiency due to the accompanying, and in my mind, unnecessary, voltage drop of D2, the diode added to "balance".

Question Part 1 of 2: Is diode D2 of Figure 1B really necessary?

Here is a simplified representation of my current boost application (consider L1, L2, and L3 95% coupled):

enter image description here

Question Part 2 of 2: Is diode D2 of this circuit really necessary?

Thanks, because unfortunately, I really don't have the capability to measure this.

It shouldn't matter, but L3 is feedback winding for this Joule-Thief like self-oscillating boost, and the coupling is currently "K1 L1 L2 L3 0.95"

\$\endgroup\$
11
  • 2
    \$\begingroup\$ To get this simulating in LTspice, add a voltage pulse source from QN1 emitter, through a resistor, to base. Give all components values. Then you can try without D2. Remember to add "K1 L1 L2 0.95" as an instruction to mutually link the inductors. \$\endgroup\$
    – rdtsc
    Commented Jan 24, 2022 at 20:34
  • 2
    \$\begingroup\$ It makes sense to me and the 20 dB improvement in conducted noise is significant to balance the diode surge currents and their CM coupling to FG. I especially like that they avoided the need to add a coupling cap on diagonal into to output to reduce feed-thru noise which degrades DC grounded lightning immunity, \$\endgroup\$ Commented Jan 24, 2022 at 21:57
  • 1
    \$\begingroup\$ Ok. Sorry for the deleted comment. In my young years, I used another means to reduce EMI, by adding an isolated shield between the transistor and the radiator. But I don't know if this was very "effective". Did not own at this time a network analyzer. \$\endgroup\$
    – Antonio51
    Commented Jan 24, 2022 at 22:14
  • 2
    \$\begingroup\$ @TonyStewartEE75 - Yes, but how much of that 20dB is the set of balanced inductors, and how much of that 20dB is the set of balanced diodes? I'm trying not to lose efficiency by having to add an additional Schottky. \$\endgroup\$ Commented Jan 24, 2022 at 22:17
  • 2
    \$\begingroup\$ Unless one has made one and verified performance , we can only speculate from similar experiences but Verbal Kint ought to know \$\endgroup\$ Commented Jan 25, 2022 at 21:42

2 Answers 2

6
+250
\$\begingroup\$

Here is a (fixed) testbench for comparing the traditional model, against a "balanced" model, with and without the extra diode. It's a beast to simulate. "Real" components were chosen to more closely replicate real results. The gates are pulsed at 20kHz, 20% duty, after 50ms delay and for a duration of 40ms. The output caps, input and load resistances were changed just to allow it to "boost" more in the short time shown.

Balanced Boost TestBench

Comparing the three input voltages (POS terminals):

Balanced Boost Input Comparison

Here we can see that the Traditional Boost (red trace) is feeding much more noise back into the supply, even with typical LISN and Noise Filter. And so is the Balanced without Diode (blue) - they behave very similarly in this aspect. The Balanced with Two Diodes (green) excels here, with very little noise coupled.

As for output, we measure the current into the load resistors:

Balanced Boost Output

Without the second diode (blue trace), it performs slightly worse than the traditional boost (red) in terms of conducted output noise. But with the 2nd diode (green), output noise is greatly reduced. Checking the inductor currents:

Balanced Boost Inductor Currents

The balanced version inductor current (green) is similar to the Traditional version (red.) But the No Diode version (blue) has much greater peaks. Zooming in:

Balanced Boost Current Peaks

The "Balanced with No Diode" does have much higher peaks, and oscillates near 3.3MHz at the switching transition - just from removing the diode.

As for the Cs currents:

Balanced Boost Cs Currents

These are different but average out to be similar. Specifically, over the 40ms of operation:

  • Traditional RMS into Cs was 6.1374A.
  • Balanced RMS (Cs1) was 5.4478A.
  • Balanced No-Diode (Cs1) was 4.1483A.

Question Part 1 of 2: Is diode D2 of Figure 1B really necessary?

Necessary, no. But it seems to reduce noise significantly, both into the supply and the load.

Both balanced versions stress the Cs capacitors less. If the diode is included, the Cs capacitor stress is higher, but conducted noise is greatly reduced.

Question Part 2 of 2: Is diode D2 of this circuit really necessary?

Ditto. Without it, the combined inductance at the switching nodes seem to want to oscillate briefly at transitions. Given the gate is driven from a coupled winding, the whole thing would likely start oscillating at 3MHz.

Here is the (fixed) .asc file, it is quite big:

Version 4
SHEET 1 1796 2468
WIRE 144 32 -32 32
WIRE 208 32 144 32
WIRE 256 32 208 32
WIRE 448 32 336 32
WIRE 576 32 448 32
WIRE 640 32 576 32
WIRE 736 32 720 32
WIRE 816 32 736 32
WIRE 976 32 816 32
WIRE 1024 32 976 32
WIRE 1184 32 1104 32
WIRE 1376 32 1184 32
WIRE 1520 32 1440 32
WIRE 1600 32 1520 32
WIRE 1696 32 1600 32
WIRE 1728 32 1696 32
WIRE 816 48 816 32
WIRE 1600 48 1600 32
WIRE -32 80 -32 32
WIRE 1184 80 1184 32
WIRE 1728 80 1728 32
WIRE 576 96 576 32
WIRE 736 96 736 32
WIRE 976 96 976 32
WIRE 1328 96 1184 32
WIRE 1520 96 1520 32
WIRE 816 128 816 112
WIRE 912 128 816 128
WIRE 1600 128 1600 112
WIRE 1696 128 1600 128
WIRE 816 144 816 128
WIRE 1600 144 1600 128
WIRE 1136 160 1120 160
WIRE -32 224 -32 160
WIRE 128 224 -32 224
WIRE 256 224 128 224
WIRE 368 224 336 224
WIRE 576 224 576 160
WIRE 576 224 368 224
WIRE 640 224 576 224
WIRE 736 224 736 160
WIRE 736 224 720 224
WIRE 816 224 816 208
WIRE 816 224 736 224
WIRE 976 224 976 160
WIRE 976 224 816 224
WIRE 1088 224 976 224
WIRE 1184 224 1184 176
WIRE 1184 224 1088 224
WIRE 1520 224 1520 160
WIRE 1520 224 1184 224
WIRE 1600 224 1600 208
WIRE 1600 224 1520 224
WIRE 1728 224 1728 160
WIRE 1728 224 1600 224
WIRE 128 256 128 224
WIRE 208 256 208 32
WIRE 368 256 368 224
WIRE 448 256 448 32
WIRE 1088 256 1088 224
WIRE 368 336 368 320
WIRE 448 336 448 320
WIRE 1088 352 1088 336
WIRE 128 432 128 320
WIRE 208 432 208 320
WIRE 208 432 128 432
WIRE 368 432 368 416
WIRE 368 432 208 432
WIRE 448 432 448 416
WIRE 448 432 368 432
WIRE 544 432 448 432
WIRE 912 432 912 128
WIRE 912 432 544 432
WIRE 1328 432 1328 160
WIRE 1328 432 912 432
WIRE 1696 432 1696 128
WIRE 1696 432 1328 432
WIRE 544 448 544 432
WIRE 144 560 -32 560
WIRE 208 560 144 560
WIRE 256 560 208 560
WIRE 448 560 336 560
WIRE 576 560 448 560
WIRE 640 560 576 560
WIRE 736 560 720 560
WIRE 816 560 736 560
WIRE 976 560 816 560
WIRE 1024 560 976 560
WIRE 1200 560 1104 560
WIRE 1376 560 1200 560
WIRE 1520 560 1440 560
WIRE 1600 560 1520 560
WIRE 1696 560 1600 560
WIRE 1728 560 1696 560
WIRE 816 576 816 560
WIRE 1600 576 1600 560
WIRE -32 608 -32 560
WIRE 1200 608 1200 560
WIRE 1728 608 1728 560
WIRE 576 624 576 560
WIRE 736 624 736 560
WIRE 976 624 976 560
WIRE 1520 624 1520 560
WIRE 1344 640 1200 560
WIRE 816 656 816 640
WIRE 912 656 816 656
WIRE 1600 656 1600 640
WIRE 1696 656 1600 656
WIRE 816 672 816 656
WIRE 1600 672 1600 656
WIRE 1152 688 1136 688
WIRE -32 752 -32 688
WIRE 128 752 -32 752
WIRE 256 752 128 752
WIRE 368 752 336 752
WIRE 576 752 576 688
WIRE 576 752 368 752
WIRE 640 752 576 752
WIRE 736 752 736 688
WIRE 736 752 720 752
WIRE 816 752 816 736
WIRE 816 752 736 752
WIRE 976 752 976 688
WIRE 976 752 816 752
WIRE 1024 752 976 752
WIRE 1200 752 1200 704
WIRE 1200 752 1104 752
WIRE 1392 752 1200 752
WIRE 1520 752 1520 688
WIRE 1520 752 1456 752
WIRE 1600 752 1600 736
WIRE 1600 752 1520 752
WIRE 1728 752 1728 688
WIRE 1728 752 1600 752
WIRE 128 784 128 752
WIRE 208 784 208 560
WIRE 368 784 368 752
WIRE 448 784 448 560
WIRE 1200 784 1200 752
WIRE 1264 784 1200 752
WIRE 1264 800 1264 784
WIRE 368 864 368 848
WIRE 448 864 448 848
WIRE 1200 880 1200 864
WIRE 128 960 128 848
WIRE 208 960 208 848
WIRE 208 960 128 960
WIRE 368 960 368 944
WIRE 368 960 208 960
WIRE 448 960 448 944
WIRE 448 960 368 960
WIRE 544 960 448 960
WIRE 912 960 912 656
WIRE 912 960 544 960
WIRE 1264 960 1264 864
WIRE 1264 960 912 960
WIRE 1344 960 1344 704
WIRE 1344 960 1264 960
WIRE 1696 960 1696 656
WIRE 1696 960 1344 960
WIRE 544 976 544 960
WIRE 128 1088 -32 1088
WIRE 208 1088 128 1088
WIRE 256 1088 208 1088
WIRE 448 1088 336 1088
WIRE 576 1088 448 1088
WIRE 640 1088 576 1088
WIRE 736 1088 720 1088
WIRE 816 1088 736 1088
WIRE 976 1088 816 1088
WIRE 1024 1088 976 1088
WIRE 1200 1088 1104 1088
WIRE 1376 1088 1200 1088
WIRE 1520 1088 1440 1088
WIRE 1600 1088 1520 1088
WIRE 1696 1088 1600 1088
WIRE 1728 1088 1696 1088
WIRE 816 1104 816 1088
WIRE 1600 1104 1600 1088
WIRE -32 1136 -32 1088
WIRE 1200 1136 1200 1088
WIRE 1728 1136 1728 1088
WIRE 576 1152 576 1088
WIRE 736 1152 736 1088
WIRE 976 1152 976 1088
WIRE 1520 1152 1520 1088
WIRE 1344 1168 1200 1088
WIRE 816 1184 816 1168
WIRE 912 1184 816 1184
WIRE 1600 1184 1600 1168
WIRE 1696 1184 1600 1184
WIRE 816 1200 816 1184
WIRE 1600 1200 1600 1184
WIRE 1152 1216 1136 1216
WIRE -32 1280 -32 1216
WIRE 128 1280 -32 1280
WIRE 256 1280 128 1280
WIRE 368 1280 336 1280
WIRE 576 1280 576 1216
WIRE 576 1280 368 1280
WIRE 640 1280 576 1280
WIRE 736 1280 736 1216
WIRE 736 1280 720 1280
WIRE 816 1280 816 1264
WIRE 816 1280 736 1280
WIRE 976 1280 976 1216
WIRE 976 1280 816 1280
WIRE 1024 1280 976 1280
WIRE 1200 1280 1200 1232
WIRE 1200 1280 1104 1280
WIRE 1520 1280 1520 1216
WIRE 1520 1280 1200 1280
WIRE 1600 1280 1600 1264
WIRE 1600 1280 1520 1280
WIRE 1728 1280 1728 1216
WIRE 1728 1280 1600 1280
WIRE 128 1312 128 1280
WIRE 208 1312 208 1088
WIRE 368 1312 368 1280
WIRE 448 1312 448 1088
WIRE 1200 1312 1200 1280
WIRE 1264 1312 1200 1280
WIRE 1264 1328 1264 1312
WIRE 368 1392 368 1376
WIRE 448 1392 448 1376
WIRE 1200 1408 1200 1392
WIRE 128 1488 128 1376
WIRE 208 1488 208 1376
WIRE 208 1488 128 1488
WIRE 368 1488 368 1472
WIRE 368 1488 208 1488
WIRE 448 1488 448 1472
WIRE 448 1488 368 1488
WIRE 544 1488 448 1488
WIRE 912 1488 912 1184
WIRE 912 1488 544 1488
WIRE 1264 1488 1264 1392
WIRE 1264 1488 912 1488
WIRE 1344 1488 1344 1232
WIRE 1344 1488 1264 1488
WIRE 1696 1488 1696 1184
WIRE 1696 1488 1344 1488
WIRE 544 1504 544 1488
FLAG 544 448 0
FLAG 1120 160 G1
FLAG 1088 352 G1
FLAG 544 976 0
FLAG 1136 688 G2
FLAG 1200 880 G2
FLAG 544 1504 0
FLAG 1136 1216 G3
FLAG 1200 1408 G3
FLAG 1696 32 Traditional
FLAG 1696 560 Balanced
FLAG 1696 1088 BalNoDiode
FLAG 144 32 T_Pos
FLAG 144 560 B_Pos
FLAG 128 1088 B_Pos_No_D
SYMBOL voltage -32 64 R0
WINDOW 123 0 0 Left 0
WINDOW 39 24 124 Left 2
SYMATTR SpiceLine Rser=1
SYMATTR InstName V1
SYMATTR Value 320
SYMBOL ind 240 48 R270
WINDOW 0 32 56 VTop 2
WINDOW 3 5 56 VBottom 2
SYMATTR InstName L1
SYMATTR Value 50µ
SYMATTR SpiceLine Ipk=5 Rser=0.021 Rpar=0 Cpar=0 mfg="Coiltronics" pn="CTX50-5-52"
SYMBOL ind 240 240 R270
WINDOW 0 32 56 VTop 2
WINDOW 3 5 56 VBottom 2
SYMATTR InstName L2
SYMATTR Value 50µ
SYMATTR SpiceLine Ipk=5 Rser=0.021 Rpar=0 Cpar=0 mfg="Coiltronics" pn="CTX50-5-52"
SYMBOL cap 112 256 R0
SYMATTR InstName C1
SYMATTR Value 1µ
SYMATTR SpiceLine V=400 Irms=0 Rser=0.0252581 Lser=10.4595n mfg="Würth Elektronik" pn="890283326009CS WCAP-FTBP 22.5 x 26 x 17 x 8.5" type="Box"
SYMBOL cap 192 256 R0
SYMATTR InstName C2
SYMATTR Value 1µ
SYMATTR SpiceLine V=400 Irms=0 Rser=0.0252581 Lser=10.4595n mfg="Würth Elektronik" pn="890283326009CS WCAP-FTBP 22.5 x 26 x 17 x 8.5" type="Box"
SYMBOL cap 352 256 R0
SYMATTR InstName C3
SYMATTR Value 0.1µ
SYMATTR SpiceLine V=630 Irms=556m Rser=0.01433 Lser=0 mfg="KEMET" pn="C1812C104KBRAC" type="X7R"
SYMBOL cap 432 256 R0
SYMATTR InstName C4
SYMATTR Value 0.1µ
SYMATTR SpiceLine V=630 Irms=556m Rser=0.01433 Lser=0 mfg="KEMET" pn="C1812C104KBRAC" type="X7R"
SYMBOL res 352 320 R0
SYMATTR InstName R1
SYMATTR Value 50
SYMBOL res 432 320 R0
SYMATTR InstName R2
SYMATTR Value 50
SYMBOL cap 560 96 R0
SYMATTR InstName C5
SYMATTR Value 0.22µ
SYMATTR SpiceLine V=1K Irms=0 Rser=0.0466984 Lser=14.381n mfg="Würth Elektronik" pn="890493426011CS WCAP-FTBE 22.5 x 26 x 18 x 9" type="Box"
SYMBOL ind2 736 16 R90
WINDOW 0 5 56 VBottom 2
WINDOW 3 32 56 VTop 2
SYMATTR InstName L3
SYMATTR Value 6m
SYMATTR Type ind
SYMATTR SpiceLine Ipk=2 Rser=0.5 Rpar=527520 Cpar=0
SYMBOL ind2 624 240 R270
WINDOW 0 32 56 VTop 2
WINDOW 3 4 56 VBottom 2
SYMATTR InstName L4
SYMATTR Value 6m
SYMATTR Type ind
SYMATTR SpiceLine Ipk=2 Rser=0.5 Rpar=527520 Cpar=0
SYMBOL cap 720 96 R0
SYMATTR InstName C6
SYMATTR Value 0.22µ
SYMATTR SpiceLine V=1K Irms=0 Rser=0.0466984 Lser=14.381n mfg="Würth Elektronik" pn="890493426011CS WCAP-FTBE 22.5 x 26 x 18 x 9" type="Box"
SYMBOL cap 800 48 R0
SYMATTR InstName C7
SYMATTR Value 0.022µ
SYMATTR SpiceLine V=1K Irms=0 Rser=0.117514 Lser=12.0417n mfg="Würth Elektronik" pn="890493425001CS WCAP-FTBE 15 x 18 x 11 x 5" type="Box"
SYMBOL cap 800 144 R0
SYMATTR InstName C8
SYMATTR Value 0.022µ
SYMATTR SpiceLine V=1K Irms=0 Rser=0.117514 Lser=12.0417n mfg="Würth Elektronik" pn="890493425001CS WCAP-FTBE 15 x 18 x 11 x 5" type="Box"
SYMBOL polcap 960 96 R0
WINDOW 3 24 56 Left 2
SYMATTR Value 470µ
SYMATTR InstName C9
SYMATTR Description Capacitor
SYMATTR Type cap
SYMATTR SpiceLine V=450 Irms=2.89 Rser=0.076 Lser=9.10993n mfg="Würth Elektronik" pn="861011486024 WCAP-AIG8 35x47" type="Al electrolytic"
SYMBOL ind 1008 48 R270
WINDOW 0 32 56 VTop 2
WINDOW 3 5 56 VBottom 2
SYMATTR InstName L5
SYMATTR Value 470µ
SYMATTR SpiceLine Ipk=3.4 Rser=0.0105 Rpar=44274 Cpar=0 mfg="Coilcraft" pn="AGP4233-474"
SYMBOL sym\\nmos 1136 80 R0
SYMATTR InstName M1
SYMATTR Value R6020PNJ
SYMBOL cap 1312 96 R0
SYMATTR InstName C10
SYMATTR Value 0.022µ
SYMATTR SpiceLine V=1K Irms=0 Rser=0.117514 Lser=12.0417n mfg="Würth Elektronik" pn="890493425001CS WCAP-FTBE 15 x 18 x 11 x 5" type="Box"
SYMBOL diode 1376 48 R270
WINDOW 0 32 32 VTop 2
WINDOW 3 0 32 VBottom 2
SYMATTR InstName D1
SYMATTR Value RFN5TF8S
SYMBOL polcap 1504 96 R0
WINDOW 3 24 56 Left 2
SYMATTR Value 220µ
SYMATTR InstName C11
SYMATTR Description Capacitor
SYMATTR Type cap
SYMATTR SpiceLine V=450 Irms=2.89 Rser=0.076 Lser=9.10993n mfg="Würth Elektronik" pn="861011486024 WCAP-AIG8 35x47" type="Al electrolytic"
SYMBOL cap 1584 48 R0
SYMATTR InstName C12
SYMATTR Value 0.022µ
SYMATTR SpiceLine V=1K Irms=0 Rser=0.117514 Lser=12.0417n mfg="Würth Elektronik" pn="890493425001CS WCAP-FTBE 15 x 18 x 11 x 5" type="Box"
SYMBOL cap 1584 144 R0
SYMATTR InstName C13
SYMATTR Value 0.022µ
SYMATTR SpiceLine V=1K Irms=0 Rser=0.117514 Lser=12.0417n mfg="Würth Elektronik" pn="890493425001CS WCAP-FTBE 15 x 18 x 11 x 5" type="Box"
SYMBOL voltage 1088 352 R180
WINDOW 0 24 96 Left 2
WINDOW 3 24 16 Left 2
WINDOW 123 0 0 Left 0
WINDOW 39 0 0 Left 0
SYMATTR InstName V2
SYMATTR Value PULSE(0 15 50m 1n 1n 10u 50u 800)
SYMBOL res 1712 64 R0
SYMATTR InstName RL1
SYMATTR Value 4.7k
SYMBOL voltage -32 592 R0
WINDOW 123 0 0 Left 0
WINDOW 39 24 124 Left 2
SYMATTR SpiceLine Rser=1
SYMATTR InstName V3
SYMATTR Value 320
SYMBOL ind 240 576 R270
WINDOW 0 32 56 VTop 2
WINDOW 3 5 56 VBottom 2
SYMATTR InstName L6
SYMATTR Value 50µ
SYMATTR SpiceLine Ipk=5 Rser=0.021 Rpar=0 Cpar=0 mfg="Coiltronics" pn="CTX50-5-52"
SYMBOL ind 240 768 R270
WINDOW 0 32 56 VTop 2
WINDOW 3 5 56 VBottom 2
SYMATTR InstName L7
SYMATTR Value 50µ
SYMATTR SpiceLine Ipk=5 Rser=0.021 Rpar=0 Cpar=0 mfg="Coiltronics" pn="CTX50-5-52"
SYMBOL cap 112 784 R0
SYMATTR InstName C14
SYMATTR Value 1µ
SYMATTR SpiceLine V=400 Irms=0 Rser=0.0252581 Lser=10.4595n mfg="Würth Elektronik" pn="890283326009CS WCAP-FTBP 22.5 x 26 x 17 x 8.5" type="Box"
SYMBOL cap 192 784 R0
SYMATTR InstName C15
SYMATTR Value 1µ
SYMATTR SpiceLine V=400 Irms=0 Rser=0.0252581 Lser=10.4595n mfg="Würth Elektronik" pn="890283326009CS WCAP-FTBP 22.5 x 26 x 17 x 8.5" type="Box"
SYMBOL cap 352 784 R0
SYMATTR InstName C16
SYMATTR Value 0.1µ
SYMATTR SpiceLine V=630 Irms=556m Rser=0.01433 Lser=0 mfg="KEMET" pn="C1812C104KBRAC" type="X7R"
SYMBOL cap 432 784 R0
SYMATTR InstName C17
SYMATTR Value 0.1µ
SYMATTR SpiceLine V=630 Irms=556m Rser=0.01433 Lser=0 mfg="KEMET" pn="C1812C104KBRAC" type="X7R"
SYMBOL res 352 848 R0
SYMATTR InstName R3
SYMATTR Value 50
SYMBOL res 432 848 R0
SYMATTR InstName R4
SYMATTR Value 50
SYMBOL cap 560 624 R0
SYMATTR InstName C18
SYMATTR Value 0.22µ
SYMATTR SpiceLine V=1K Irms=0 Rser=0.0466984 Lser=14.381n mfg="Würth Elektronik" pn="890493426011CS WCAP-FTBE 22.5 x 26 x 18 x 9" type="Box"
SYMBOL ind2 736 544 R90
WINDOW 0 5 56 VBottom 2
WINDOW 3 32 56 VTop 2
SYMATTR InstName L8
SYMATTR Value 6m
SYMATTR Type ind
SYMATTR SpiceLine Ipk=2 Rser=0.5 Rpar=527520 Cpar=0
SYMBOL ind2 624 768 R270
WINDOW 0 32 56 VTop 2
WINDOW 3 4 56 VBottom 2
SYMATTR InstName L9
SYMATTR Value 6m
SYMATTR Type ind
SYMATTR SpiceLine Ipk=2 Rser=0.5 Rpar=527520 Cpar=0
SYMBOL cap 720 624 R0
SYMATTR InstName C19
SYMATTR Value 0.22µ
SYMATTR SpiceLine V=1K Irms=0 Rser=0.0466984 Lser=14.381n mfg="Würth Elektronik" pn="890493426011CS WCAP-FTBE 22.5 x 26 x 18 x 9" type="Box"
SYMBOL cap 800 576 R0
SYMATTR InstName C20
SYMATTR Value 0.022µ
SYMATTR SpiceLine V=1K Irms=0 Rser=0.117514 Lser=12.0417n mfg="Würth Elektronik" pn="890493425001CS WCAP-FTBE 15 x 18 x 11 x 5" type="Box"
SYMBOL cap 800 672 R0
SYMATTR InstName C21
SYMATTR Value 0.022µ
SYMATTR SpiceLine V=1K Irms=0 Rser=0.117514 Lser=12.0417n mfg="Würth Elektronik" pn="890493425001CS WCAP-FTBE 15 x 18 x 11 x 5" type="Box"
SYMBOL polcap 960 624 R0
WINDOW 3 24 56 Left 2
SYMATTR Value 470µ
SYMATTR InstName C22
SYMATTR Description Capacitor
SYMATTR Type cap
SYMATTR SpiceLine V=450 Irms=2.89 Rser=0.076 Lser=9.10993n mfg="Würth Elektronik" pn="861011486024 WCAP-AIG8 35x47" type="Al electrolytic"
SYMBOL ind2 1008 576 R270
WINDOW 0 32 56 VTop 2
WINDOW 3 5 56 VBottom 2
SYMATTR InstName L10
SYMATTR Value 100µ
SYMATTR Type ind
SYMATTR SpiceLine Ipk=5 Rser=0.028 Rpar=0 Cpar=0 mfg="Coiltronics" pn="CTX100-5-52"
SYMBOL sym\\nmos 1152 608 R0
SYMATTR InstName M2
SYMATTR Value R6020PNJ
SYMBOL cap 1328 640 R0
SYMATTR InstName C23
SYMATTR Value 0.022µ
SYMATTR SpiceLine V=1K Irms=0 Rser=0.117514 Lser=12.0417n mfg="Würth Elektronik" pn="890493425001CS WCAP-FTBE 15 x 18 x 11 x 5" type="Box"
SYMBOL diode 1376 576 R270
WINDOW 0 32 32 VTop 2
WINDOW 3 0 32 VBottom 2
SYMATTR InstName D2
SYMATTR Value RFN5TF8S
SYMBOL polcap 1504 624 R0
WINDOW 3 24 56 Left 2
SYMATTR Value 220µ
SYMATTR InstName C24
SYMATTR Description Capacitor
SYMATTR Type cap
SYMATTR SpiceLine V=450 Irms=2.89 Rser=0.076 Lser=9.10993n mfg="Würth Elektronik" pn="861011486024 WCAP-AIG8 35x47" type="Al electrolytic"
SYMBOL cap 1584 576 R0
SYMATTR InstName C25
SYMATTR Value 0.022µ
SYMATTR SpiceLine V=1K Irms=0 Rser=0.117514 Lser=12.0417n mfg="Würth Elektronik" pn="890493425001CS WCAP-FTBE 15 x 18 x 11 x 5" type="Box"
SYMBOL cap 1584 672 R0
SYMATTR InstName C26
SYMATTR Value 0.022µ
SYMATTR SpiceLine V=1K Irms=0 Rser=0.117514 Lser=12.0417n mfg="Würth Elektronik" pn="890493425001CS WCAP-FTBE 15 x 18 x 11 x 5" type="Box"
SYMBOL voltage 1200 880 R180
WINDOW 0 24 96 Left 2
WINDOW 3 24 16 Left 2
WINDOW 123 0 0 Left 0
WINDOW 39 0 0 Left 0
SYMATTR InstName V4
SYMATTR Value PULSE(0 15 50m 1n 1n 10u 50u 800)
SYMBOL res 1712 592 R0
SYMATTR InstName RL2
SYMATTR Value 4.7k
SYMBOL ind2 1120 736 R90
WINDOW 0 4 56 VBottom 2
WINDOW 3 32 56 VTop 2
SYMATTR InstName L11
SYMATTR Value 100µ
SYMATTR Type ind
SYMATTR SpiceLine Ipk=5 Rser=0.028 Rpar=0 Cpar=0 mfg="Coiltronics" pn="CTX100-5-52"
SYMBOL cap 1248 800 R0
SYMATTR InstName C27
SYMATTR Value 0.022µ
SYMATTR SpiceLine V=1K Irms=0 Rser=0.117514 Lser=12.0417n mfg="Würth Elektronik" pn="890493425001CS WCAP-FTBE 15 x 18 x 11 x 5" type="Box"
SYMBOL diode 1456 736 R90
WINDOW 0 0 32 VBottom 2
WINDOW 3 32 32 VTop 2
SYMATTR InstName D3
SYMATTR Value RFN5TF8S
SYMBOL voltage -32 1120 R0
WINDOW 123 0 0 Left 0
WINDOW 39 24 124 Left 2
SYMATTR SpiceLine Rser=1
SYMATTR InstName V5
SYMATTR Value 320
SYMBOL ind 240 1104 R270
WINDOW 0 32 56 VTop 2
WINDOW 3 5 56 VBottom 2
SYMATTR InstName L12
SYMATTR Value 50µ
SYMATTR SpiceLine Ipk=5 Rser=0.021 Rpar=0 Cpar=0 mfg="Coiltronics" pn="CTX50-5-52"
SYMBOL ind 240 1296 R270
WINDOW 0 32 56 VTop 2
WINDOW 3 5 56 VBottom 2
SYMATTR InstName L13
SYMATTR Value 50µ
SYMATTR SpiceLine Ipk=5 Rser=0.021 Rpar=0 Cpar=0 mfg="Coiltronics" pn="CTX50-5-52"
SYMBOL cap 112 1312 R0
SYMATTR InstName C28
SYMATTR Value 1µ
SYMATTR SpiceLine V=400 Irms=0 Rser=0.0252581 Lser=10.4595n mfg="Würth Elektronik" pn="890283326009CS WCAP-FTBP 22.5 x 26 x 17 x 8.5" type="Box"
SYMBOL cap 192 1312 R0
SYMATTR InstName C29
SYMATTR Value 1µ
SYMATTR SpiceLine V=400 Irms=0 Rser=0.0252581 Lser=10.4595n mfg="Würth Elektronik" pn="890283326009CS WCAP-FTBP 22.5 x 26 x 17 x 8.5" type="Box"
SYMBOL cap 352 1312 R0
SYMATTR InstName C30
SYMATTR Value 0.1µ
SYMATTR SpiceLine V=630 Irms=556m Rser=0.01433 Lser=0 mfg="KEMET" pn="C1812C104KBRAC" type="X7R"
SYMBOL cap 432 1312 R0
SYMATTR InstName C31
SYMATTR Value 0.1µ
SYMATTR SpiceLine V=630 Irms=556m Rser=0.01433 Lser=0 mfg="KEMET" pn="C1812C104KBRAC" type="X7R"
SYMBOL res 352 1376 R0
SYMATTR InstName R5
SYMATTR Value 50
SYMBOL res 432 1376 R0
SYMATTR InstName R6
SYMATTR Value 50
SYMBOL cap 560 1152 R0
SYMATTR InstName C32
SYMATTR Value 0.22µ
SYMATTR SpiceLine V=1K Irms=0 Rser=0.0466984 Lser=14.381n mfg="Würth Elektronik" pn="890493426011CS WCAP-FTBE 22.5 x 26 x 18 x 9" type="Box"
SYMBOL ind2 736 1072 R90
WINDOW 0 5 56 VBottom 2
WINDOW 3 32 56 VTop 2
SYMATTR InstName L14
SYMATTR Value 6m
SYMATTR Type ind
SYMATTR SpiceLine Ipk=2 Rser=0.5 Rpar=527520 Cpar=0
SYMBOL ind2 624 1296 R270
WINDOW 0 32 56 VTop 2
WINDOW 3 4 56 VBottom 2
SYMATTR InstName L15
SYMATTR Value 6m
SYMATTR Type ind
SYMATTR SpiceLine Ipk=2 Rser=0.5 Rpar=527520 Cpar=0
SYMBOL cap 720 1152 R0
SYMATTR InstName C33
SYMATTR Value 0.22µ
SYMATTR SpiceLine V=1K Irms=0 Rser=0.0466984 Lser=14.381n mfg="Würth Elektronik" pn="890493426011CS WCAP-FTBE 22.5 x 26 x 18 x 9" type="Box"
SYMBOL cap 800 1104 R0
SYMATTR InstName C34
SYMATTR Value 0.022µ
SYMATTR SpiceLine V=1K Irms=0 Rser=0.117514 Lser=12.0417n mfg="Würth Elektronik" pn="890493425001CS WCAP-FTBE 15 x 18 x 11 x 5" type="Box"
SYMBOL cap 800 1200 R0
SYMATTR InstName C35
SYMATTR Value 0.022µ
SYMATTR SpiceLine V=1K Irms=0 Rser=0.117514 Lser=12.0417n mfg="Würth Elektronik" pn="890493425001CS WCAP-FTBE 15 x 18 x 11 x 5" type="Box"
SYMBOL polcap 960 1152 R0
WINDOW 3 24 56 Left 2
SYMATTR Value 470µ
SYMATTR InstName C36
SYMATTR Description Capacitor
SYMATTR Type cap
SYMATTR SpiceLine V=450 Irms=2.89 Rser=0.076 Lser=9.10993n mfg="Würth Elektronik" pn="861011486024 WCAP-AIG8 35x47" type="Al electrolytic"
SYMBOL ind2 1008 1104 R270
WINDOW 0 32 56 VTop 2
WINDOW 3 5 56 VBottom 2
SYMATTR InstName L16
SYMATTR Value 100µ
SYMATTR Type ind
SYMATTR SpiceLine Ipk=5 Rser=0.028 Rpar=0 Cpar=0 mfg="Coiltronics" pn="CTX100-5-52"
SYMBOL sym\\nmos 1152 1136 R0
SYMATTR InstName M3
SYMATTR Value R6020PNJ
SYMBOL cap 1328 1168 R0
SYMATTR InstName C37
SYMATTR Value 0.022µ
SYMATTR SpiceLine V=1K Irms=0 Rser=0.117514 Lser=12.0417n mfg="Würth Elektronik" pn="890493425001CS WCAP-FTBE 15 x 18 x 11 x 5" type="Box"
SYMBOL diode 1376 1104 R270
WINDOW 0 32 32 VTop 2
WINDOW 3 0 32 VBottom 2
SYMATTR InstName D4
SYMATTR Value RFN5TF8S
SYMBOL polcap 1504 1152 R0
WINDOW 3 24 56 Left 2
SYMATTR Value 220µ
SYMATTR InstName C38
SYMATTR Description Capacitor
SYMATTR Type cap
SYMATTR SpiceLine V=450 Irms=2.89 Rser=0.076 Lser=9.10993n mfg="Würth Elektronik" pn="861011486024 WCAP-AIG8 35x47" type="Al electrolytic"
SYMBOL cap 1584 1104 R0
SYMATTR InstName C39
SYMATTR Value 0.022µ
SYMATTR SpiceLine V=1K Irms=0 Rser=0.117514 Lser=12.0417n mfg="Würth Elektronik" pn="890493425001CS WCAP-FTBE 15 x 18 x 11 x 5" type="Box"
SYMBOL cap 1584 1200 R0
SYMATTR InstName C40
SYMATTR Value 0.022µ
SYMATTR SpiceLine V=1K Irms=0 Rser=0.117514 Lser=12.0417n mfg="Würth Elektronik" pn="890493425001CS WCAP-FTBE 15 x 18 x 11 x 5" type="Box"
SYMBOL voltage 1200 1408 R180
WINDOW 0 24 96 Left 2
WINDOW 3 24 16 Left 2
WINDOW 123 0 0 Left 0
WINDOW 39 0 0 Left 0
SYMATTR InstName V6
SYMATTR Value PULSE(0 15 50m 1n 1n 10u 50u 800)
SYMBOL res 1712 1120 R0
SYMATTR InstName RL3
SYMATTR Value 4.7k
SYMBOL ind2 1120 1264 R90
WINDOW 0 4 56 VBottom 2
WINDOW 3 32 56 VTop 2
SYMATTR InstName L17
SYMATTR Value 100µ
SYMATTR Type ind
SYMATTR SpiceLine Ipk=5 Rser=0.028 Rpar=0 Cpar=0 mfg="Coiltronics" pn="CTX100-5-52"
SYMBOL cap 1248 1328 R0
SYMATTR InstName C41
SYMATTR Value 0.022µ
SYMATTR SpiceLine V=1K Irms=0 Rser=0.117514 Lser=12.0417n mfg="Würth Elektronik" pn="890493425001CS WCAP-FTBE 15 x 18 x 11 x 5" type="Box"
TEXT 272 -48 Left 2 ;LISN
TEXT 656 -48 Left 2 ;Noise Filter
TEXT 672 416 Left 2 ;Ground
TEXT 136 208 Left 2 ;NEG
TEXT 1240 -48 Left 2 ;Traditional Boost
TEXT 760 0 Left 2 !K1 L3 L4 1.0
TEXT 1120 336 Left 2 ;20kHz, 20% duty
TEXT 672 944 Left 2 ;Ground
TEXT 136 736 Left 2 ;NEG
TEXT 1152 1024 Left 2 ;"Balanced" Boost Without Diode
TEXT 760 528 Left 2 !K2 L8 L9 1.0
TEXT 1000 896 Left 2 ;20kHz, 20% duty
TEXT 1136 528 Left 2 !K3 L10 L11 1.0
TEXT 672 1472 Left 2 ;Ground
TEXT 136 1264 Left 2 ;NEG
TEXT 760 1056 Left 2 !K4 L14 L15 1.0
TEXT 1000 1424 Left 2 ;20kHz, 20% duty
TEXT 1400 1472 Left 2 !.tran 100m startup uic
TEXT 1136 1056 Left 2 !K5 L16 L17 1.0
TEXT 1232 496 Left 2 ;"Balanced" Boost
LINE Normal 640 176 720 176
LINE Normal 720 80 640 176
LINE Normal 640 80 720 80
LINE Normal 640 704 720 704
LINE Normal 720 608 640 704
LINE Normal 640 608 720 608
LINE Normal 1104 608 1024 608
LINE Normal 1024 704 1104 608
LINE Normal 1104 704 1024 704
LINE Normal 640 1232 720 1232
LINE Normal 720 1136 640 1232
LINE Normal 640 1136 720 1136
LINE Normal 1104 1136 1024 1136
LINE Normal 1024 1232 1104 1136
LINE Normal 1104 1232 1024 1232
RECTANGLE Normal 512 464 96 -32 2
RECTANGLE Normal 928 272 544 -32 2
RECTANGLE Normal 512 992 96 496 2
RECTANGLE Normal 928 800 544 496 2
RECTANGLE Normal 512 1520 96 1024 2
RECTANGLE Normal 928 1328 544 1024 2
\$\endgroup\$
3
  • 2
    \$\begingroup\$ Have tried "harmonic" analysis. For D2, It is "pertinent" and clearly very "useful". \$\endgroup\$
    – Antonio51
    Commented Jan 26, 2022 at 20:46
  • \$\begingroup\$ I entered your testbench before you added the file source code to your very nice answer. I was wondering why my output was different from yours, and then I found that the three models are cross-connected via V2, V4, V6, and the gates of all 3 MOSFETs on Label G1, which I have as Labels V2, V4, and V6 on my testbench. \$\endgroup\$ Commented Jan 26, 2022 at 21:22
  • \$\begingroup\$ I also added a capacitor just like C27 and C41 on the Traditional Boost (but I'm not sure it belongs). And finally, I changed 470u to 480u on Traditional, all 100u to 120u, and 120u couplings to 0.99 on both Balanced, to try to more evenly match the inductances. And my inductors are not real ones. \$\endgroup\$ Commented Jan 26, 2022 at 21:25
1
\$\begingroup\$

Tried analysis of schematic in a particular case, did not include capacitor between Drain and ground, nor between source and ground.

Results are voltages inputs and currents main inputs (spectrum) for comparison.

So, clearly showing that the "D2" added diode is "useful".

enter image description here

enter image description here

enter image description here

\$\endgroup\$
5
  • \$\begingroup\$ Is this quasi-peak such that the alternating peaks cancel? or is the BW high enough to show true peak conduction noise. \$\endgroup\$ Commented Jan 27, 2022 at 22:15
  • \$\begingroup\$ What simulator is that? \$\endgroup\$ Commented Jan 28, 2022 at 1:49
  • 1
    \$\begingroup\$ @MicroservicesOnDDD - Free simulator microcap 12 spectrum-soft.com/download/download.shtm \$\endgroup\$
    – Antonio51
    Commented Jan 28, 2022 at 5:42
  • 1
    \$\begingroup\$ @TonyStewartEE75 sorry, don't understand (BW ?) what you mean. The first picture shows that the second circuit (short-circuited diode D4) is noisier on current inputs. In particular, at the harmonics frequencies of the switching (20 kHz- 50% duty). (EE&O) \$\endgroup\$
    – Antonio51
    Commented Jan 28, 2022 at 5:53
  • 1
    \$\begingroup\$ NB: voltages are referenced to ground, and are noisy in the unbalanced case. But, If (Vg1-Vg2) and (Vg3-Vg4) are drawn (rectified sinusoidal wave), these voltages are obviously "clean". I did not show all current inputs which are obviously noisy in the unbalanced case ... \$\endgroup\$
    – Antonio51
    Commented Jan 28, 2022 at 6:05

Not the answer you're looking for? Browse other questions tagged or ask your own question.