0
$\begingroup$

I am following this paper (see eq. 19-22) and trying to derive the equation of corresponding to Einstein-Dilaton gravity (ignoring the Maxwell part for now)

\begin{align} S_{\text{E-D}} = \int d^4 x \sqrt{-g} \, e^{-2\phi}\left[R + 4 g^{\mu\nu} \nabla_{\mu}\phi \nabla_{\nu}\phi\right].\tag{19} \end{align}

How to derive the eoms and energy momentum tensor in the present context? How are those quantities different from the classical GR case? What is the physical interpretation of the dilaton field in the action?

$\endgroup$
3
  • $\begingroup$ What exactly is your difficulty? Looking at this action, deriving the EoMs seems quite similar to pure GR. The new term and factor doesn't really change much: the tricky bits with them would be only the variation of the $\sqrt{-g}$ factor, which is done in any reference discussing GR from an action. No stress tensor here, since everything is gravitational (the dilaton field will only contribute to the left side of the would-be Einstein equations) $\endgroup$ Commented Jul 6 at 4:37
  • $\begingroup$ The difficulty is that I am not finding the EoM given in paper's equation (20) after varying. I am looking for the stress-energy tensor corresponding to $\phi$. $\endgroup$ Commented Jul 6 at 4:55
  • $\begingroup$ @FaberBosch check my answer here physics.stackexchange.com/questions/587395/… $\endgroup$
    – Noone
    Commented Jul 6 at 5:47

1 Answer 1

1
+50
$\begingroup$

Given an action $$S[\psi]=\int d^4x \mathcal{L}(\psi,\nabla_\mu \psi),$$ how do we find the equations of motion? The principle of stationary action says that the equations of motion can be found by extremizing the action, i.e., by setting its first-order change with respect to a change in its argument to zero. That is, we demand that $$\left.\frac{dS[\psi+\alpha \delta \psi]}{d\alpha}\right|_{\alpha=0}=0.$$ Note that $\delta \psi$ need not be small, it is an arbitrary variation. The only thing we demand from $\delta\psi$ is that it must vanish at infinity. Let us look at the action you provided: $$ S\left[\varphi, g_{\mu\nu}\right]=\int d^4x \sqrt{-g} e^{-2 \varphi}\left[R+4 g_{\mu \nu} \nabla^\mu \varphi \nabla^\nu \varphi\right] $$ Set $$\left.\frac{d S\left[\varphi+\alpha \delta \varphi, g_{\mu \nu}\right]}{d \alpha}\right|_{\alpha=0}$$ equal to zero to get \begin{equation} \begin{aligned} & 0=\frac{d}{d\alpha}|_{\alpha=0}\int d^4x \sqrt{-g} e^{-2 (\varphi+\alpha \delta \varphi)}\left[R+4 g_{\mu \nu} \nabla^\mu (\varphi+\alpha \delta \varphi) \nabla^\nu (\varphi+\alpha \delta \varphi)\right]\\ &=\int d^4 x \sqrt{-g} e^{-2 \varphi}\left\{\left[R+4 \nabla_\mu \varphi \nabla^\mu \varphi\right](-2 \delta \varphi)+8 \nabla^\mu \delta \varphi \nabla_\mu \varphi\right\} \\ &=\int d^4 x \sqrt{-g} e^{-2 \varphi}\left\{-2 R+8 \nabla^\mu \varphi \nabla_\mu \varphi-8 \square \varphi\right\} \delta \varphi \\ & \Rightarrow R-4 \nabla^\mu \varphi \nabla_\mu \varphi+4 \square \varphi=0 \end{aligned} \qquad(1) \end{equation} where $g_{\mu\nu}\nabla^{\mu}\nabla^{\nu}=\Box$. I have made use of $$ \begin{aligned} \nabla^\mu\left(\delta \varphi \nabla_\mu \varphi e^{-2 \varphi}\right)= & e^{-2 \varphi} \nabla^\mu \delta \varphi \nabla_\mu \varphi+\Box \varphi \delta \varphi e^{-2 \varphi} -2 \nabla^\mu \varphi \nabla_\mu \varphi \delta \varphi e^{-2 \varphi} \\ \Rightarrow e^{-2 \varphi} \nabla^\mu \delta \varphi \nabla_\mu \varphi= & \delta \varphi e^{-2 \varphi}\left(2 \nabla^\mu \varphi \nabla_\mu \varphi-\Box \varphi\right)+\underbrace{\nabla^\mu\left(\delta \varphi \nabla_\mu \varphi e^{-2\varphi}\right)}_{\text{Integrates to an inconsequential boundary term}} \end{aligned} $$

Next, let us vary the action with respect to the metric tensor. As you probably know, we usually vary with respect to the inverse metric rather than the metric itself because it's usually easier to do it this way. Without further ado, let us write our action as $$ S\left[\varphi, g^{\mu\nu}\right]=\int d^4x \sqrt{-g} e^{-2 \varphi}\left[R+4 g^{\mu \nu} \nabla_\mu \varphi \nabla_\nu \varphi\right] $$ and set $$\left.\frac{d S\left[\varphi, g^{\mu \nu}+\alpha \delta g^{\mu\nu}\right]}{d \alpha}\right|_{\alpha=0}$$ equal to zero: $$ \begin{aligned} & 0=\left.\frac{d}{d \alpha}\right|_{\alpha=0} \int d^4x \sqrt{-\operatorname{det}\left(g(\alpha))\right.}\left[R\left(g^{\mu \nu}+\alpha \delta g^{\mu\nu}\right)+4\left(g^{\mu \nu}+\alpha \delta g^{\mu\nu}\right) \nabla_\mu \varphi \nabla_\nu \varphi\right] e^{-2 \varphi} \\ & =\int d^4x\left[-\frac{1}{2} \sqrt{-g} g_{\mu \nu} \delta g^{\mu \nu}\left[R+4 g^{\alpha \beta} \nabla_\alpha \varphi \nabla_\beta \varphi \right]e^{-2 \varphi}+\sqrt{-g}\left[g^{\mu\nu}\frac{d R_{\mu\nu}\left(g^{\mu \nu}+\alpha \delta g^{\mu \nu}\right)}{d \alpha}\right|_{\alpha=0}\right. \\ & \left.+\delta g^{\mu\nu}R_{\mu\nu}+4 \delta g^{\mu \nu} \nabla_\mu \varphi \nabla_\nu \varphi\right] e^{-2 \varphi} \\ & =\int d^4 x \sqrt{-g} e^{-2 \varphi}\left[R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}+2 g_{\mu \nu} \nabla_\alpha \varphi \nabla^\alpha \varphi-2 \square \varphi g_{\mu \nu}+2 \nabla_\mu \nabla_\nu \varphi \right]\delta g^{\mu\nu} \\ & \Rightarrow R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=-2 g_{\mu \nu} \nabla_\alpha \varphi \nabla^\alpha \varphi+2 \square \varphi g_{\mu \nu}-2 \nabla_\mu \nabla_\nu \varphi. \\ & \end{aligned} $$ In going from the first equality to the second, I used $$\frac{d}{d\alpha}\sqrt{-\operatorname{det}(g(\alpha))}|_{\alpha=0}=-\frac{1}{2}g_{\mu \nu}\delta g^{\mu\nu}\sqrt{-\operatorname{det}(g)}, $$ and $$\begin{aligned}\left.\int d^4x \sqrt{-g}g^{\mu\nu}\frac{d R_{\mu\nu}\left(g^{\mu \nu}+\alpha \delta g^{\mu \nu}\right)}{d \alpha}\right|_{\alpha=0}e^{-2\varphi}= & \int d^4 x \sqrt{-g} e^{-2 \varphi} \nabla_\sigma\left[g_{\mu \nu} \nabla^\sigma \delta g^{\mu \nu}-\nabla_\lambda \delta g^{\sigma \lambda}\right] \\ = & -\int d^4 x \sqrt{-g} \nabla_\sigma e^{-2 \varphi}\left[g_{\mu \nu} \nabla^\sigma \delta g^{\mu \nu}-\nabla_\lambda \delta g^{\sigma\lambda}\right] \\ = & \int d^4 x \sqrt{-g}\left[g_{\mu \nu} \nabla^\sigma \nabla_\sigma e^{-2 \varphi}-\nabla_\mu \nabla_{\nu} e^{-2 \varphi}\right] \delta g^{\mu \nu} \\ = & \int d^4 x \sqrt{-g}\delta g^{\mu\nu}\left[g_{\mu \nu}\left[4 \nabla_\alpha\varphi \nabla^\alpha \varphi-2 \Box \varphi\right]-\left[4 \nabla_\nu \varphi \nabla_\mu \varphi-2 \nabla_\mu \nabla_\nu \varphi\right]\right]e^{-2\varphi} \end{aligned} $$. The identity $$\left.\int d^4x \sqrt{-g}g^{\mu\nu}\frac{d R_{\mu\nu}\left(g^{\mu \nu}+\alpha \delta g^{\mu \nu}\right)}{d \alpha}\right|_{\alpha=0}e^{-2\varphi}= \int d^4 x \sqrt{-g} e^{-2 \varphi} \nabla_\sigma\left[g_{\mu \nu} \nabla^\sigma \delta g^{\mu \nu}-\nabla_\lambda \delta g^{\sigma \lambda}\right]$$ is proven in every general relativity textbook. For example, you can take a look at chapter 4 of Carroll's book. Now, $$ \begin{aligned} & R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=-2 g_{\mu \nu} \nabla_\alpha \varphi \nabla^\alpha \varphi+2 \square \varphi g_{\mu \nu}-2 \nabla_\mu \nabla_\nu \varphi \\ &\Rightarrow R=8 \nabla_\alpha \varphi \nabla^\alpha \varphi-6 \square \varphi \end{aligned} $$ By the way, if we plug this back into the final equation in (1), we find that \begin{equation} \nabla^{\mu}\varphi\nabla_{\mu}\varphi=\frac{1}{2}\Box\varphi \end{equation} which means that the gravitational field equation can now be written as $$R_{\mu\nu}=-2\nabla_\mu\nabla_\nu \varphi.$$ To find the energy-momentum tensor, we simply write the equation of motion resulting from varying the action with respect to the metric in the form $$R_{\mu \nu}-\frac{1}{2}Rg_{\mu\nu}=T_{\mu\nu}.$$ In our case, $$T_{\mu\nu}=\Box\varphi g_{\mu\nu}-2\nabla_\mu\nabla_\nu \varphi.$$

$\endgroup$
2
  • $\begingroup$ Your gravity field equation is wrong. As you can see in the linked paper. You're making the same mistake I made the first time. Please see @Noone's comment. What I understood is that the variation of the $R$ is not only $R_{\mu\nu}\delta g^{\mu\nu}$ but there are more terms such as $g_{\mu\nu}\Box \delta g^{\mu\nu}$ and $\nabla_{\mu}\nabla_{\nu}\delta g^{\mu\nu}$. To separate the $\delta g^{\mu\nu}$ one integrates by parts. Then those derivatives hit $e^{-2\phi}$. Which I was missing when I did the calculations first time. I've not yet done the full calculation. You may give it a try. $\endgroup$ Commented Jul 9 at 2:11
  • $\begingroup$ @FaberBosch You are absolutely right. I have edited my original answer. $\endgroup$ Commented Jul 9 at 14:47