Skip to main content

All Questions

4 votes
1 answer
488 views

Is automorphism on a compact group necessarily homeomorphism? How about N-dimensional torus? [closed]

Is automorphism on a compact group necessarily homeomorphism? I don't think so,but I think it is possible on the N-dimensional torus.
user530909's user avatar
7 votes
0 answers
209 views

Relation beween Chern-Simons and WZW levels, and transgression

3d Chern-Simons gauge theories based on a Lie group $G$ are classified by an element $k_{CS}\in H^4(BG,\mathbb{Z})$, its level. Via the CS/WZW correspondence the theory is related with a 2d non-linear ...
Andrea Antinucci's user avatar
12 votes
1 answer
368 views

Approximate classifying space by boundaryless manifolds?

As pointed out by Achim Krause, any finite CW complex is homotopy equivalent to a manifold with boundary (by embedding into $\mathbb R^n$ and thickening), and so every finite type CW complex can be ...
0207's user avatar
  • 123
5 votes
0 answers
105 views

Are there exotic examples of a Lie group up to coherent isotopy?

This question is based on attempting to construct the (homotopy type) of Lie groups using Cobordism Hypothesis style abstract nonsense. There is an $\infty$-groupoid of smooth, framed manifolds where ...
Charles Wang's user avatar
6 votes
0 answers
110 views

Explicit representatives for Borel cohomology classes of a compact Lie group?

I'm looking for explicit representatives of $H^3_{Borel}(G, R/Z)$, i.e. a measurable function $G^3\to R/Z$ representing a generator of the cohomology group. (Here $G$ is a compact (perhaps simple) ...
Kevin Walker's user avatar
  • 12.7k
4 votes
0 answers
244 views

Homotopy group of maps into S^3 using its Lie group multiplication to define the group operation

The Bruschlinsky group of maps of a space X into S1 up to homotopy, using the multiplication on S1, is well-known to equal the first cohomology group of X (at least assuming X is a reasonably nice ...
Daniel Asimov's user avatar
7 votes
0 answers
183 views

Are the spaces BG for compact connected groups G ind-projective or ind-Kähler?

Let $G$ be a compact connected group, or maybe better its complexification. By thinking about the simplicial Borel space, or using $n$-acyclic $G$-spaces for higher and higher $n$, it's "easy&...
Ben Webster's user avatar
  • 44.3k
1 vote
1 answer
148 views

For topological torus action, there is a subcircle whose fixed point is the same as the torus

Let $T=\mathbb{S}^{1}\times \mathbb{S}^{1}\times \cdots \times \mathbb{S}^{1} $ ($n$ times) be an $n$-dimensional torus acting on any topological space $X$. The group $G$ is said to act on a space $X$ ...
Mehmet Onat's user avatar
  • 1,301
1 vote
0 answers
127 views

A question about fixed point set of the compact group actions

Let $G$ be an infinite compact Lie group acting on a compact space $X$. Denote $F=F(G,X)=\{x\in X$ : $gx=x$ for all $g\in G\}$. Show that if $H^*(B_{G_x};\mathbb{Q})=0$ for all $x \notin F$ and $T^1$ ...
Mehmet Onat's user avatar
  • 1,301
6 votes
1 answer
424 views

Does $\pi_1(H)=0\Rightarrow \pi_3(G/H)=0$ for a simple and simply connected Lie group $G$?

$\DeclareMathOperator\SU{SU}$Let $G$ be a simple and simply-connected Lie group and $H\neq 1$ be a simple and simply connected subgroup, is it true that $\pi_3(G/H)=0$? If not, what is a counter-...
Davi Costa's user avatar
1 vote
1 answer
163 views

Lie group framing and framed bordism

What is the definition of Lie group framing, in simple terms? Is the Lie group framing of spheres a particular type of Lie group framing? (How special is the Lie group framing of spheres differed ...
zeta's user avatar
  • 447
5 votes
1 answer
313 views

Is the inclusion of the maximal torus in a simply connected compact Lie group null-homotopic?

Let $G$ be a simply connected compact Lie group and $T$ its maximal torus with inclusion $i:T \hookrightarrow G$. By simply connectedness of the group $G$ and asphericity of the torus $T$, the induced ...
ms_87h's user avatar
  • 53
5 votes
0 answers
127 views

Division of fibration by $\Sigma_{n}$ gives Serre fibration

This is related to a question posted on StackExchange: https://math.stackexchange.com/questions/4776877/left-divisor-of-a-fibration-by-compact-lie-group-is-a-fibration. The question there had received ...
TopologyStudent's user avatar
4 votes
0 answers
212 views

Is the total space of a $ U_1 $ principal bundle over a compact homogeneous space always itself homogeneous?

Let $ U_1 \to E \to B $ be a $ U_1 $ principal bundle. Suppose that $ B $ is homogenous (admits a transitive action by a Lie group) and compact. Then must it be the case that $ E $, the total space of ...
Ian Gershon Teixeira's user avatar
4 votes
0 answers
423 views

Non-triviality of map $S^{24} \longrightarrow S^{21} \longrightarrow Sp(3)$

Let $\theta$ be the generator of $\pi_{21}(Sp(3))\cong \mathbb{Z}_3$, (localized at 3). How to show the composition $$S^{24}\longrightarrow S^{21}\overset{\theta}\longrightarrow Sp(3)$$ is non-trivial ...
Sajjad Mohammadi's user avatar

15 30 50 per page
1
2 3 4 5
17