Skip to main content

All Questions

Tagged with
2 votes
0 answers
67 views

Closed form for $\psi^{1/k}(1)$, where $k$ is an integer

I have proven the identity $$ \sum_{k=1}^{\infty} \dfrac{\operatorname{_2F_1}(1, 2, 2-1/t,-1/k)}{{k}^{2}} = Γ(2-\dfrac{1}t){\psi^{1/t}(1)}+\psi(-\dfrac{1}t)(\dfrac{1}t(1-\dfrac{1}t))+\gamma(1-\dfrac{1}...
Aiden McDonald's user avatar
0 votes
0 answers
104 views

Is this divergent series, convergent?

Examining the series $\sum_{n=1}^{\infty} \frac{1}{nx}$ alongside its integral counterpart reveals insights into its convergence. Notably, the integral over intervals from $10^n$ to $10^{n+1}$ yields ...
Diogo Sousa's user avatar
1 vote
2 answers
82 views

Upper rectangle area sum to approximate 1/x between $1\leq x\leq 3$

I am trying to figure out how to use rectangles to approximate the area under the curve $1/x$ on the interval $[1,3]$ using $n$ rectangle that covers the region under the curve as such. Here is what I ...
Remu X's user avatar
  • 1,071
2 votes
2 answers
99 views

Prove $\frac12\left(\psi\left(\frac{x+1}2\right)-\psi\left(\frac x2\right)\right)=\psi(x)-\psi\left(\frac x2\right)-\ln2$

Desmos suggests that$$\frac12\left(\psi\left(\frac{x+1}2\right)-\psi\left(\frac x2\right)\right)=\psi(x)-\psi\left(\frac x2\right)-\ln2$$Where $\psi$ is the digamma function. I can write the LHS as $$\...
Kamal Saleh's user avatar
  • 6,539
0 votes
0 answers
31 views

Can we compare the arithmetic mean of the ratios given the comparison between individual arithmetic means?

I have positive real random numbers $u_1,\ldots,u_n$ and $v_1,\ldots,v_n$ and $x_1,\ldots,x_n$ and $y_1,\ldots,y_n$. I know that the arithmetic mean of $u_i$'s is greater than the arithmetic mean of $...
zdm's user avatar
  • 452
1 vote
1 answer
93 views

Evaluation of $\int_{0}^{\frac{\pi}{4}} \frac{\log(\log(\tan(\frac{\pi}{4} + x))) \cdot \log(\tan(\frac{\pi}{4} + x)))}{\tan(2x)} \,dx$ [closed]

$$\int_{0}^{\frac{\pi}{4}} \frac{\log(\log(\tan(\frac{\pi}{4} + x))) \cdot \log(\tan(\frac{\pi}{4} + x)))}{\tan(2x)} \,dx$$ $$\int_{0}^{\frac{\pi}{4}} \frac{\log(\log(\tan(\frac{\pi}{4} + x))) \cdot \...
Mods And Staff Are Not Fair's user avatar
2 votes
0 answers
364 views

A sum of two curious alternating binoharmonic series

Happy New Year 2024 Romania! Here is a question proposed by Cornel Ioan Valean, $$\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{2^{2n}}\binom{2n}{n}\sum_{k=1}^n (-1)^{k-1}\frac{H_k}{k}-\sum_{n=1}^{\infty}(-1)...
user97357329's user avatar
  • 5,495
5 votes
2 answers
155 views

Show that $\sum_{n=1}^{\infty} \frac{\binom{2n}{n} (H_{2n} - H_n)}{4^n (2n - 1)^2} = 2 + \frac{3\pi}{2} \log(2) - 2G - \pi$

Show that $$\sum_{n=1}^{\infty} \frac{\binom{2n}{n} (H_{2n} - H_n)}{4^n (2n - 1)^2} = 2 + \frac{3\pi}{2} \log(2) - 2G - \pi$$ My try : We know that $$\sum_{n=1}^{\infty} \binom{2n}{n} (H_{2n} - H_{n}) ...
Mods And Staff Are Not Fair's user avatar
1 vote
1 answer
131 views

for any positive numbers $p_k$ how to find the minimum of $\sum_{k=1}^n a_k^2 +(\sum_{k=1}^n a_k)^2$ when $\sum_{k=1}^n p_ka_k=1$? [duplicate]

For any positive numbers $p_k$ how to find the minimum of $\sum\limits_{k=1}^n a_k^2 +(\sum\limits_{k=1}^n a_k)^2$ when $\sum\limits_{k=1}^n p_ka_k=1$? I saw this problem on my problem book and I ...
pie's user avatar
  • 6,350
1 vote
1 answer
128 views

Prove $\sum_{k=j}^{\lfloor n/2\rfloor}\frac1{4^k}\binom{n}{2k}\binom{k}{j}\binom{2k}{k}=\frac1{2^n}\binom{2n-2j}{n-j}\binom{n-j}j$

let $x>1$, $n\in \mathbb N$ and $$P_{n}(x)=\dfrac{1}{\pi}\int_{0}^{\pi}(x+\sqrt{x^2-1}\cos{t})^ndt.$$ Prove that $$P_{n}(x)=\dfrac{1}{\pi}\int_{0}^{\pi}\dfrac{1}{\left(x-\sqrt{x^2-1}\cos{t}\right)^{...
Fergns Qian's user avatar
0 votes
2 answers
80 views

On the convergence of $\sum_{n=0}^\infty(f(x)-T_n\{f\}(x))$

To test the efficiency of the Taylor Series at approximating functions, I was wondering whether$$\sum_{n=0}^\infty(f(x)-T_n\{f\}(x))\tag{$\star$}$$converges, where $T_n\{f\}(x)$ is the degree $n$ ...
Kamal Saleh's user avatar
  • 6,539
0 votes
1 answer
142 views

How to rigorously prove that $e^x = \sum\limits_{n=0}^ \infty \frac{x^n}{n!}$ without defining derivatives? [duplicate]

In my problem book, there was a question: By defining $e= \lim\limits_{n \to \infty}\left( 1+\frac{1}{n} \right) ^n$ prove that $e^x = \sum\limits_{n=0}^ \infty \frac{x^n}{n!}$. this is a strange ...
pie's user avatar
  • 6,350
22 votes
3 answers
1k views

Conjecture: $\sum\limits_{k=1}^nk^m=S_3(n)\times\frac{P_{m-3}(n)}{N_m}$ for odd $m>1 \ ;\ =S_2(n)\times\frac{P_{m-2}'(n)}{N_m}$ for even $m$.

When I was in high school, I was fascinated by $\displaystyle\sum\limits_{k=1}^n k= \frac{n(n+1)}{2}$ so I tried to find the general solution for $\displaystyle\sum\limits_{k=1}^n k^m$ s.t $m \in \...
pie's user avatar
  • 6,350
-1 votes
1 answer
81 views

$\sum _{k=1}^{\infty }{\frac {\coth(k\pi )}{(k\pi )^{4n-1}}}$ [duplicate]

Show that $${\displaystyle \sum _{k=1}^{\infty }{\frac {\coth(k\pi )}{(k\pi )^{4n-1}}}=\sum _{k=0}^{2n}(-1)^{k-1}\,{\frac {\zeta (2k)}{\pi ^{2k}}}\,{\frac {\zeta (4n-2k)}{\pi ^{4n-2k}}}\qquad n\in \...
user avatar
1 vote
2 answers
205 views

Which closed form expression for this series involving Catalan numbers : $\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{4^nn^2}\binom{2n}{n}$

Obtain a closed-form for the series: $$\mathcal{S}=\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{4^nn^2}\binom{2n}{n}$$ From here https://en.wikipedia.org/wiki/List_of_m ... cal_series we know that for $\...
Mods And Staff Are Not Fair's user avatar

15 30 50 per page