Skip to main content

All Questions

Tagged with
2 votes
0 answers
67 views

Closed form for $\psi^{1/k}(1)$, where $k$ is an integer

I have proven the identity $$ \sum_{k=1}^{\infty} \dfrac{\operatorname{_2F_1}(1, 2, 2-1/t,-1/k)}{{k}^{2}} = Γ(2-\dfrac{1}t){\psi^{1/t}(1)}+\psi(-\dfrac{1}t)(\dfrac{1}t(1-\dfrac{1}t))+\gamma(1-\dfrac{1}...
Aiden McDonald's user avatar
0 votes
0 answers
104 views

Is this divergent series, convergent?

Examining the series $\sum_{n=1}^{\infty} \frac{1}{nx}$ alongside its integral counterpart reveals insights into its convergence. Notably, the integral over intervals from $10^n$ to $10^{n+1}$ yields ...
Diogo Sousa's user avatar
1 vote
2 answers
82 views

Upper rectangle area sum to approximate 1/x between $1\leq x\leq 3$

I am trying to figure out how to use rectangles to approximate the area under the curve $1/x$ on the interval $[1,3]$ using $n$ rectangle that covers the region under the curve as such. Here is what I ...
Remu X's user avatar
  • 1,071
2 votes
2 answers
99 views

Prove $\frac12\left(\psi\left(\frac{x+1}2\right)-\psi\left(\frac x2\right)\right)=\psi(x)-\psi\left(\frac x2\right)-\ln2$

Desmos suggests that$$\frac12\left(\psi\left(\frac{x+1}2\right)-\psi\left(\frac x2\right)\right)=\psi(x)-\psi\left(\frac x2\right)-\ln2$$Where $\psi$ is the digamma function. I can write the LHS as $$\...
Kamal Saleh's user avatar
  • 6,549
0 votes
0 answers
31 views

Can we compare the arithmetic mean of the ratios given the comparison between individual arithmetic means?

I have positive real random numbers $u_1,\ldots,u_n$ and $v_1,\ldots,v_n$ and $x_1,\ldots,x_n$ and $y_1,\ldots,y_n$. I know that the arithmetic mean of $u_i$'s is greater than the arithmetic mean of $...
zdm's user avatar
  • 452
1 vote
1 answer
95 views

Evaluation of $\int_{0}^{\frac{\pi}{4}} \frac{\log(\log(\tan(\frac{\pi}{4} + x))) \cdot \log(\tan(\frac{\pi}{4} + x)))}{\tan(2x)} \,dx$ [closed]

$$\int_{0}^{\frac{\pi}{4}} \frac{\log(\log(\tan(\frac{\pi}{4} + x))) \cdot \log(\tan(\frac{\pi}{4} + x)))}{\tan(2x)} \,dx$$ $$\int_{0}^{\frac{\pi}{4}} \frac{\log(\log(\tan(\frac{\pi}{4} + x))) \cdot \...
Mods And Staff Are Not Fair's user avatar
2 votes
0 answers
365 views

A sum of two curious alternating binoharmonic series

Happy New Year 2024 Romania! Here is a question proposed by Cornel Ioan Valean, $$\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{2^{2n}}\binom{2n}{n}\sum_{k=1}^n (-1)^{k-1}\frac{H_k}{k}-\sum_{n=1}^{\infty}(-1)...
user97357329's user avatar
  • 5,495
5 votes
2 answers
157 views

Show that $\sum_{n=1}^{\infty} \frac{\binom{2n}{n} (H_{2n} - H_n)}{4^n (2n - 1)^2} = 2 + \frac{3\pi}{2} \log(2) - 2G - \pi$

Show that $$\sum_{n=1}^{\infty} \frac{\binom{2n}{n} (H_{2n} - H_n)}{4^n (2n - 1)^2} = 2 + \frac{3\pi}{2} \log(2) - 2G - \pi$$ My try : We know that $$\sum_{n=1}^{\infty} \binom{2n}{n} (H_{2n} - H_{n}) ...
Mods And Staff Are Not Fair's user avatar
1 vote
1 answer
131 views

for any positive numbers $p_k$ how to find the minimum of $\sum_{k=1}^n a_k^2 +(\sum_{k=1}^n a_k)^2$ when $\sum_{k=1}^n p_ka_k=1$? [duplicate]

For any positive numbers $p_k$ how to find the minimum of $\sum\limits_{k=1}^n a_k^2 +(\sum\limits_{k=1}^n a_k)^2$ when $\sum\limits_{k=1}^n p_ka_k=1$? I saw this problem on my problem book and I ...
pie's user avatar
  • 6,620
1 vote
1 answer
129 views

Prove $\sum_{k=j}^{\lfloor n/2\rfloor}\frac1{4^k}\binom{n}{2k}\binom{k}{j}\binom{2k}{k}=\frac1{2^n}\binom{2n-2j}{n-j}\binom{n-j}j$

let $x>1$, $n\in \mathbb N$ and $$P_{n}(x)=\dfrac{1}{\pi}\int_{0}^{\pi}(x+\sqrt{x^2-1}\cos{t})^ndt.$$ Prove that $$P_{n}(x)=\dfrac{1}{\pi}\int_{0}^{\pi}\dfrac{1}{\left(x-\sqrt{x^2-1}\cos{t}\right)^{...
Fergns Qian's user avatar
0 votes
2 answers
80 views

On the convergence of $\sum_{n=0}^\infty(f(x)-T_n\{f\}(x))$

To test the efficiency of the Taylor Series at approximating functions, I was wondering whether$$\sum_{n=0}^\infty(f(x)-T_n\{f\}(x))\tag{$\star$}$$converges, where $T_n\{f\}(x)$ is the degree $n$ ...
Kamal Saleh's user avatar
  • 6,549
0 votes
1 answer
142 views

How to rigorously prove that $e^x = \sum\limits_{n=0}^ \infty \frac{x^n}{n!}$ without defining derivatives? [duplicate]

In my problem book, there was a question: By defining $e= \lim\limits_{n \to \infty}\left( 1+\frac{1}{n} \right) ^n$ prove that $e^x = \sum\limits_{n=0}^ \infty \frac{x^n}{n!}$. this is a strange ...
pie's user avatar
  • 6,620
22 votes
3 answers
1k views

Conjecture: $\sum\limits_{k=1}^nk^m=S_3(n)\times\frac{P_{m-3}(n)}{N_m}$ for odd $m>1 \ ;\ =S_2(n)\times\frac{P_{m-2}'(n)}{N_m}$ for even $m$.

When I was in high school, I was fascinated by $\displaystyle\sum\limits_{k=1}^n k= \frac{n(n+1)}{2}$ so I tried to find the general solution for $\displaystyle\sum\limits_{k=1}^n k^m$ s.t $m \in \...
pie's user avatar
  • 6,620
-1 votes
1 answer
81 views

$\sum _{k=1}^{\infty }{\frac {\coth(k\pi )}{(k\pi )^{4n-1}}}$ [duplicate]

Show that $${\displaystyle \sum _{k=1}^{\infty }{\frac {\coth(k\pi )}{(k\pi )^{4n-1}}}=\sum _{k=0}^{2n}(-1)^{k-1}\,{\frac {\zeta (2k)}{\pi ^{2k}}}\,{\frac {\zeta (4n-2k)}{\pi ^{4n-2k}}}\qquad n\in \...
user avatar
1 vote
2 answers
205 views

Which closed form expression for this series involving Catalan numbers : $\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{4^nn^2}\binom{2n}{n}$

Obtain a closed-form for the series: $$\mathcal{S}=\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{4^nn^2}\binom{2n}{n}$$ From here https://en.wikipedia.org/wiki/List_of_m ... cal_series we know that for $\...
Mods And Staff Are Not Fair's user avatar
6 votes
4 answers
241 views

Evaluate $\int_{0}^{1}\{1/x\}^2\,dx$

Evaluate $$\displaystyle{\int_{0}^{1}\{1/x\}^2\,dx}$$ Where {•} is fractional part My work $$\displaystyle{\int\limits_0^1 {{{\left\{ {\frac{1}{x}} \right\}}^2}dx} = \sum\limits_{n = 1}^\infty {\...
user avatar
2 votes
1 answer
78 views

$\frac{(1+x)^n}{(1-x)^3}=a_{0}+a_{1}x+a_{2}x^2+\cdots$ show that ${a_{0}+\cdots+a_{n-1}=\frac{n(n+2)(n+7)2^{n-4}}{3}}$

$$\displaystyle{\frac{(1+x)^n}{(1-x)^3}=a_{0}+a_{1}x+a_{2}x^2+\cdots}$$, show that $$\displaystyle{a_{0}+\cdots+a_{n-1}=\frac{n(n+2)(n+7)2^{n-4}}{3}}$$ When i gave this problem to my friends they said ...
user avatar
2 votes
1 answer
212 views

Calculate the value $\lim_{n\to \infty}\frac{\sum_{j=1}^n \sum_{k=1}^n k^{1/k^j}}{\sqrt[n]{(\sum_{j=1}^n j!)\sum_{j=1}^n j^n}}$

As in title, I want to calculate the following value $$\lim_{n\to \infty}\frac{\sum_{j=1}^n \sum_{k=1}^n k^{1/k^j}}{\sqrt[n]{(\sum_{j=1}^n j!)\sum_{j=1}^n j^n}}.$$ Here is my attempt: Since $\sum_{j=...
SuperSupao's user avatar
-1 votes
2 answers
96 views

Evaluate $\sum_{m=1}^{\infty} \frac{(-1)^m \mathcal{H}_{2m} }{2m+1} - \frac{1}{2} \sum_ {m=1}^{\infty} \frac{(-1)^m \mathcal{H}_m}{2m+1}$ [duplicate]

Let's declare $\mathcal{G}$ is constant of Catalanand the $\mathcal{H}_m-st$ mharmonic term. Let it be shown that: $$\displaystyle{\sum_{m=1}^{\infty} \frac{(-1)^m \mathcal{H}_{2m} }{2m+1} -\frac{1}{2}...
Mods And Staff Are Not Fair's user avatar
1 vote
2 answers
105 views

Evaluate $\sum_{n=1}^{\infty} (-1)^{n+1} H_n \left( \frac{1}{n+1} - \frac{1}{n+3} + \frac{1}{n+5} - \ldots \right)$

$$\sum_{n=1}^{\infty} (-1)^{n+1} H_n \left( \frac{1}{n+1} - \frac{1}{n+3} + \frac{1}{n+5} - \ldots \right) = \frac{\pi}{16} \cdot \log(2) + \frac{3}{16} \cdot \log(2) - \frac{\pi^2}{192}$$ $$\sum_{k=...
Mods And Staff Are Not Fair's user avatar
1 vote
2 answers
64 views

Closed form for $f_k(y)$

The question is quite simple. Given $$\sum_{k=0}^{n-1}(x+y)^k$$ We can re-write it in terms as a polynomial in $x$, with coefficients being polynomials in $y$, i.e $$\sum_{k=0}^{n-1}(x+y)^k = \sum_{k=...
Mako's user avatar
  • 702
1 vote
3 answers
66 views

I want to use integration for performing summation in Algebra

I am a class 9th student. Sorry if my problem is silly. I am trying to find the sum of squares from 1 to 10. For this I tried summation, and it was fine. But now I came to know that Integration can be ...
Shivam kumar Gupta's user avatar
3 votes
1 answer
143 views

Show that $\sum_{n=1}^{\infty} \frac{(-1)^n (\psi(n) - \psi(2n))}{n} = \frac{\pi^2}{16} + \left(\frac{\ln(2)}{2}\right)^2$

Show That $$\sum_{n=1}^{\infty} \frac{(-1)^n (\psi(n) - \psi(2n))}{n} =\bbox[15px, #B3E0FF, border: 5px groove #0066CC]{\frac{\pi^2}{16} + \left(\frac{\ln(2)}{2}\right)^2}$$ my work $$\sum_{n=1}^{\...
Mods And Staff Are Not Fair's user avatar
3 votes
0 answers
63 views

Is there any function in which the Maclaurin series evaluates to having prime numbered powers and factorials? [duplicate]

I am searching for any information or analysis regarding the functions $$f(x)=\sum_{n=1}^{\infty}\frac{x^{p\left(n\right)}}{\left(p\left(n\right)\right)!}$$ or $$g(x)=\sum_{n=1}^{\infty}\frac{\left(-1\...
Ian N's user avatar
  • 41
5 votes
3 answers
193 views

Show that $\sum_ {k=1}^{\infty}\dfrac{\zeta(2k)-\zeta(3k)}{k}=\ln\left(\frac{2\cosh\left(\sqrt{3}\pi/2\right)}{3\pi}\right)$

Question $$\zeta(k)=1+\dfrac{1}{2^k}+\dfrac{1}{3^k}+\cdots+\dfrac{1}{n^k}+\cdots$$ Prove that : $$\sum_ {k=1}^{\infty}\dfrac{\zeta(2k)-\zeta(3k)}{k}=\ln\left(\frac{2\cosh\left(\sqrt{3}\pi/2\right)}{...
user avatar
10 votes
3 answers
190 views

Show that $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^2} \sum_{n=1}^k \frac{1}{n}=\frac{5\zeta(3)}{8}$

$$\sum_{k=1}^{\infty} \dfrac{(-1)^{k+1}}{k^2} \sum_{n=1}^k \dfrac{1}{n}=\frac{5\zeta(3)}{8}$$ I tried to create a proof from some lemmas some are suggested by my Senior friends Lemma 1 $$ {H_n} = \sum\...
user avatar
2 votes
0 answers
82 views

Limit : $\lim_{n\to+\infty}a^n(n-\zeta(2)-\zeta(3)-\cdots-\zeta(n))$

question Compute the limit $$\displaystyle{\lim_{n\to+\infty}a^n(n-\zeta(2)-\zeta(3)-\cdots-\zeta(n))}$$, if any, for the various values of the positive real a, where $\zeta$ the zeta function of Mr. ...
Mods And Staff Are Not Fair's user avatar
0 votes
1 answer
75 views

where is the mistake in my calculations of $\displaystyle \lim_{n \to \infty} \sum\limits_{k=1 }^n \frac{a_k}{(n+1-k)(n+2-k)}= \lim_{n\to \infty}a_n$

if $\lim\limits_{n \to \infty}a_n =a$ prove that $\displaystyle \lim_{n \to \infty} \sum\limits_{k=1 }^n \frac{a_k}{(n+1-k)(n+2-k)}= a$ define $b_{n-1}= a_n - a_{n-1}$ then $\lim\limits_{n \to \...
pie's user avatar
  • 6,620
1 vote
0 answers
137 views

Simple algebra in rearring terms

I have a very simple mathematical question, and it is just about algebra which seems very tedious. First, let me state my problem from the beginning: Let $i$ be an index representing countries ($i = {...
Maximilian's user avatar
6 votes
2 answers
185 views

Calculate $\sum\limits_{n = - \infty }^\infty {\frac{{\log \left( {{{\left( {n + \frac{1}{3}} \right)}^2}} \right)}}{{n + \frac{1}{3}}}} $

question: how do we find that: $$ S = \sum\limits_{n = - \infty }^\infty {\frac{{\log \left( {{{\left( {n + \frac{1}{3}} \right)}^2}} \right)}}{{n + \frac{1}{3}}}} $$ I modified the sum $$\sum\...
user avatar

15 30 50 per page
1
2
3 4 5
61