Skip to main content

All Questions

1 vote
0 answers
101 views

Skolem's Paradox and undefinable reals

I'm trying to understand Skolem's paradox, and also some related ideas about definable numbers. I'm pretty new to learning about model theory. I'll lay out what I think I'm understanding, and maybe ...
0 votes
0 answers
31 views

Set representation of (real) numbers [duplicate]

Using the Von Neumann representation we can represent the non-negative whole numbers using the empty set, e.g. $1$ as {$\emptyset$}. How do we represent with this notation numbers like $\sqrt2, -1, \...
3 votes
1 answer
116 views

In ZF, is it possible that there is no cardinal such that Reals injects into?

Working in ZF, is it possible that there is no cardinal number such that $\mathbb{R}$ can inject into? For if there exists a cardinal number $\kappa$ such that $\mathbb{R}$ injects into $\kappa$, then ...
0 votes
0 answers
105 views

Can every perfect set that is not a closed interval, or $(-\infty,a]$, or $[b,\infty)$ be written as a union of these types of intervals?

I have been reading the book "Introduction to Set Theory" by Jech and Hrbacek and have come to the following exercise in the chapter on sets of real numbers : Every perfect set is either an ...
9 votes
4 answers
2k views

Using Zorn's lemma show that $\mathbb R^+$ is the disjoint union of two sets closed under addition.

Let $\Bbb R^+$ be the set of positive real numbers. Use Zorn's Lemma to show that $\Bbb R^+$ is the union of two disjoint, non-empty subsets, each closed under addition.
3 votes
1 answer
216 views

Can you prove that $\Bbb R$ is uncountable using the Lebesgue measure?

I have been studying measure theory from the ground up, and am quite excited by the seeming power it holds. I thought of this last evening, and I wish to ask if the following proof of uncountability ...
11 votes
1 answer
2k views

The well ordering principle

Here is the statement of The Well Ordering Principle: If $A$ is a nonempty set, then there exists a linear ordering of A such that the set is well ordered. In the book, it says that the chief ...
4 votes
3 answers
450 views

Possible interpretation of real numbers as functions? [duplicate]

At the end of the day, a real number can be viewed simply as a function over the integers —> the naturals which tells you the digit as that ten’s place (assuming base ten)? You could augment this ...
1 vote
1 answer
144 views

Defining real numbers to exclude incomputable numbers

The real numbers are normally constructed via Dedekind cuts or similar approaches, which result in incomputable numbers: numbers that no finite algorithm can produce to arbitrary precision. This is ...
1 vote
2 answers
167 views

Continuum family of continuum subsets of $\mathbb R$ which are not pairwise order isomorphic

I need to construct a continuum family of pairwise order inequivalent subsets of $\mathbb R$, such that cardinality of intersection of every constructed subset and every nontrivial interval is also ...
11 votes
1 answer
1k views

More than the real numbers: hyperreals, superreals, surreals ...?

I've read something about extensions of the real numbers, as hyperreals, superreals, surreals and, as I can understand, all these extensions contain some new kinds of infinitesimal and infinite ''...
0 votes
1 answer
63 views

Exist strictly increasing $f \colon \omega _1 \mapsto \mathbb{R}$ [duplicate]

Does there exist a strictly increasing injective function $f \colon \omega _1 \mapsto \mathbb{R}$, where $\omega _1$ denotes the first uncountable ordinal?
3 votes
0 answers
74 views

How high in the constructible hierarchy do you need to go to see Dedekind-incompleteness?

This is a follow-up to my questions here and here. Let $X= (A,+,*,<)$ be an ordered field. Let us define a constructible hierarchy relative to $X$ as follows. Let $D_0(X)=A\cup A^2 \cup \{+,*,&...
5 votes
0 answers
138 views

Where is the first gap in the constructible hierarchy relative to a real closed field?

This is a follow-up to my question here. Let $X= (A,+,*)$ be a real closed field. Let us define a constructible hierarchy relative to $X$ as follows. Let $D_0(X)=A\cup A^2 \cup \{+,*\}$. For any ...
2 votes
1 answer
105 views

Where is the copy of $\mathbb{N}$ in the constructible hierarchy relative to a real closed field?

Let $X$ be a real closed field. Let us define a constructible hierarchy relative to $X$ is defined as follows. (This is slightly nonstandard terminology.). Let $L_0(X)=X$. For any ordinal $\beta$, ...

15 30 50 per page