Skip to main content

All Questions

0 votes
1 answer
93 views

$\sum_{i=1}^{n} \frac {x^{2i-1}}{\sqrt{2i}}$ as polylogarithm

$$\sum_{i=1}^{n} \frac {x^{2i-1}}{\sqrt{2i}}$$ It is very clear for me that it has to be polylogarithm function but as it is partial sum I tried to split the series as $$\sum_{i=1}^{\infty} \frac {x^{...
Adolf L.'s user avatar
1 vote
0 answers
59 views

Difference of polylogarithms of complex conjugate arguments

I have the expression $$\tag{1} \operatorname{Li}_{1/2}(z)-\operatorname{Li}_{1/2}(z^*) $$ Where $\operatorname{Li}$ is the polylogarithm and $^*$ denotes complex conjugation. The expression is ...
Sal's user avatar
  • 4,817
3 votes
1 answer
96 views

On $\int_0^{2\pi }\frac{\prod_{k=1}^m \text{Li}_{a_k}(e^{-ix})-\prod_{k=1}^m \text{Li}_{a_k}(e^{ix})}{e^{-ix}-e^{ix}} \, dx$

OP of this post evaluated a lot of remarkable polylog integrals (without proof), from which I conjecture a generalized one ($a_k\in \mathbb N$): $$\int_0^{2 \pi } \frac{\prod _{k=1}^m \text{Li}_{a_k}(...
Infiniticism's user avatar
  • 8,654
44 votes
2 answers
3k views

Remarkable logarithmic integral $\int_0^1 \frac{\log^2 (1-x) \log^2 x \log^3(1+x)}{x}dx$

We have the following result ($\text{Li}_{n}$ being the polylogarithm): $$\tag{*}\small{ \int_0^1 \log^2 (1-x) \log^2 x \log^3(1+x) \frac{dx}{x} = -168 \text{Li}_5(\frac{1}{2}) \zeta (3)+96 \text{Li}...
pisco's user avatar
  • 19.1k