1
$\begingroup$

It's possible to generalize these series? $$\sum_{k=1}^{\infty}H_k^{(s)}x^k=\frac{\operatorname{Li}_s(x)}{1-x}$$ $$\sum_{k=1}^{\infty}H_k^2 x^k=\frac{\ln(1-x)^2+\operatorname{Li}_2(x)}{1-x}$$ Where: $$H_k:=\sum_{j=1}^{k}\frac{1}{j}\text{ are the harmonic numbers}$$ $$H_k^{(s)}:=\sum_{j=1}^{k}\frac{1}{j^s}\text{ are the generalized harmonic numbers}$$ $$\operatorname{Li}_s(z)\text{ is the polylogarithm}$$ I'd like to know if there are formulas for series like this: $$\sum_{k=1}^{\infty}\left(H_k^{(s)}\right)^n x^k\qquad \text{where }n\in\mathbb{N}$$

$\endgroup$
3
  • 1
    $\begingroup$ Second equality do you mean $H_k^{(2)}$ or $H_k^2$ ? $\endgroup$
    – EDX
    Commented May 6, 2023 at 12:11
  • $\begingroup$ In the second equation it is $H_k^2$ $\endgroup$ Commented May 11, 2023 at 10:18
  • $\begingroup$ Have you tried an expression for $n=2,3,4$ at least. $\endgroup$
    – EDX
    Commented May 11, 2023 at 12:50

0

You must log in to answer this question.