Skip to main content

All Questions

17 votes
1 answer
1k views

A rare integral involving $\operatorname{Li}_2$

A rare but interesting integral problem: $$\int_{0}^{1} \frac{\operatorname{Li}_2(-x)- \operatorname{Li}_2(1-x)+\ln(x)\ln(1+x)+\pi x\ln(1+x) -\pi x\ln(x)}{1+x^2}\frac{\text{d}x}{\sqrt{1-x^2} } =\...
Setness Ramesory's user avatar
8 votes
2 answers
494 views

Finding $\int_{1}^{\infty} \frac{1}{1+x^2} \frac{\operatorname{Li}_2\left ( \frac{1-x}{2} \right ) }{\pi^2+\ln^2\left(\frac{x-1}{2}\right)}\text{d}x$

Prove the integral $$\int_{1}^{\infty} \frac{1}{1+x^2} \frac{\operatorname{Li}_2\left ( \frac{1-x}{2} \right ) }{ \pi^2+\ln^2\left ( \frac{x-1}{2} \right ) }\text{d}x =\frac{96C\ln2+7\pi^3}{12(\pi^2+...
Setness Ramesory's user avatar
9 votes
1 answer
329 views

Different ways to evaluate $\sum_{n=1}^\infty\frac{H_nH_n^{(2)}}{(n+1)(n+2)(n+3)}$

The following question: How to compute the harmonic series $$\sum_{n=1}^\infty\frac{H_nH_n^{(2)}}{(n+1)(n+2)(n+3)}$$ where $H_n=\sum_{k=1}^n\frac{1}{k}$ and $H_n^{(2)}=\sum_{k=1}^n\frac{1}{k^2}$, was ...
Ali Shadhar's user avatar
  • 25.8k
6 votes
1 answer
494 views

Is the closed form of $\int_0^1 \frac{x\ln^a(1+x)}{1+x^2}dx$ known in the literature?

We know how hard these integrals $$\int_0^1 \frac{x\ln(1+x)}{1+x^2}dx; \int_0^1 \frac{x\ln^2(1+x)}{1+x^2}dx; \int_0^1 \frac{x\ln^3(1+x)}{1+x^2}dx; ...$$ can be. So I decided to come up with a ...
Ali Shadhar's user avatar
  • 25.8k
8 votes
2 answers
428 views

Evaluating $\int_0^\infty\frac{\tan^{-1}av\cot^{-1}av}{1+v^2}\,dv$

The Weierstrass substitution stuck in my head after I used it to prove the rigidity of the braced hendecagon (and tridecagon). Thus I had another look at this question which I eventually answered in a ...
Parcly Taxel's user avatar
4 votes
2 answers
180 views

Prove $\int_0^1\frac{\text{Li}_2(-x^2)}{\sqrt{1-x^2}}\,dx=\pi\int_0^1\frac{\ln\left(\frac{2}{1+\sqrt{1+x}}\right)}{x}\,dx$

I managed here to prove $$\int_0^1\frac{\text{Li}_2(-x^2)}{\sqrt{1-x^2}}\,dx=\pi\int_0^1\frac{\ln\left(\frac{2}{1+\sqrt{1+x}}\right)}{x}\,dx$$ but what I did was converting the LHS integral to a ...
Ali Shadhar's user avatar
  • 25.8k
6 votes
0 answers
362 views

Evaluate two integrals involving $\operatorname{Li}_3,\operatorname{Li}_4$

I need to evaluate $$\int_{1}^{\infty} \frac{\displaystyle{\operatorname{Re}\left ( \operatorname{Li}_3\left ( \frac{1+x}{2} \right ) \right ) \ln^2\left ( \frac{1+x}{2} \right ) }}{x(1+x^2)} \...
Setness Ramesory's user avatar
12 votes
3 answers
460 views

How to evaluate$J(k) = \int_{0}^{1} \frac{\ln^2x\ln\left ( \frac{1-x}{1+x} \right ) }{(x-1)^2-k^2(x+1)^2}\text{d}x$

I am trying evaluating this $$J(k) = \int_{0}^{1} \frac{\ln^2x\ln\left ( \frac{1-x}{1+x} \right ) }{(x-1)^2-k^2(x+1)^2}\ \text{d}x.$$ For $k=1$, there has $$J(1)=\frac{\pi^4}{96}.$$ Maybe $J(k)$ ...
Setness Ramesory's user avatar
3 votes
0 answers
291 views

Evaluate $\int_{1}^{\infty}\frac{\operatorname{Li}_3(-x)\ln(x-1)}{1+x^2}\text{d}x$

Using $$ \operatorname{Li}_3(-x) =-\frac{x}{2}\int_{0}^{1}\frac{\ln^2t}{1+tx} \text{d}t $$ It might be $$ -\frac{1}{2}\int_{0}^{1}\ln^2t \int_{1}^{\infty}\frac{x\ln(x-1)}{(1+tx)(1+x^2)}\text{d}x\text{...
Setness Ramesory's user avatar
7 votes
2 answers
338 views

evaluate $\int_{0}^{1}\frac{\text{Li}_2(\frac{x^2-1}{4})}{1-x^2}dx$

I came across this integral: $$\int_{0}^{1}\frac{\text{Li}_2(\frac{x^2-1}{4})}{1-x^2}dx=\frac{1}{2}\int_{-1}^{1}\frac{\text{Li}_2(\frac{x^2-1}{4})}{1-x^2}dx$$ One way to evaluate is to start with the ...
mathlover123's user avatar
8 votes
1 answer
422 views

Integral $\int _0^1\frac{\ln \left(x\right)\text{Li}_2\left(x\right)}{x\left(4\pi ^2+\ln ^2\left(x\right)\right)}\:\mathrm{d}x$

A comrade sent me this conjecture $$\int _0^1\frac{\ln \left(x\right)\operatorname{Li}_2\left(x\right)}{x\left(4\pi ^2+\ln ^2\left(x\right)\right)}\:\mathrm{d}x=3\zeta (2)\left(4\ln \left(A\right)-1\...
Salva Fernandez's user avatar
3 votes
2 answers
311 views

How can I evaluate $\int _0^1\frac{\operatorname{Li}_2\left(-x^2\right)}{\sqrt{1-x^2}}\:\mathrm{d}x$

I've been trying to find and prove that: $$\int _0^1\frac{\operatorname{Li}_2\left(-x^2\right)}{\sqrt{1-x^2}}\:\mathrm{d}x=\pi \operatorname{Li}_2\left(\frac{1-\sqrt{2}}{2}\right)-\frac{\pi }{2}\left(\...
mattsteiner64's user avatar
2 votes
1 answer
126 views

Closed form evaluation of a class of inverse hyperbolic integrals

Define the function $\mathcal{I}:\mathbb{R}_{>0}^{2}\rightarrow\mathbb{R}$ via the definite integral $$\mathcal{I}{\left(a,b\right)}:=\int_{0}^{1}\mathrm{d}x\,\frac{\operatorname{arsinh}{\left(ax\...
David H's user avatar
  • 30.7k
4 votes
3 answers
257 views

Arctan integral $ \int_{0}^{\infty}\frac{\arctan(x)}{x^{2}+k^{2}}$

Is there a closed form for the integral $$ \int_{0}^{\infty}\frac{\arctan(x)}{x^{2}+k^{2}}$$ for $\forall k \ge 1 $? Well, I was able to get the closed form for the case where $|k|\le1$, and it is of ...
Senna S's user avatar
  • 247
7 votes
1 answer
196 views

Iterated integral involving polylogarithms

To establish notation the polylogarithm Li$_n(x)$ has the power series expansion $$ \text{Li}_n(x)= \sum_{k=1}^\infty \frac{x^k}{k^n} $$ and the Riemann zeta can be considered the special value $\zeta(...
user321120's user avatar
  • 6,760

15 30 50 per page
1 2 3
4
5
19