Skip to main content

Questions tagged [metric-spaces]

Metric spaces are sets on which a metric is defined. A metric is a generalization of the concept of "distance" in the Euclidean sense. Metric spaces arise as a special case of the more general notion of a topological space. For questions about Riemannian metrics use the tag (riemannian-geometry) instead.

1 vote
0 answers
20 views

The existence of $f$ $k$-lipschitz in the subset $Y\subset \mathbb{R}$ implies the existence of a real $k$-lipschitz function $g$ such that $g|_Y=f$.

Here is the problem from a book for metric spaces I'm trying to solve: Let $f:Y\rightarrow\mathbb{R}$ $k$-lipschitz in the subset $Y\subset \mathbb{R}$. Prove that there is a $k$-lipschitz function $...
Marcelo's user avatar
  • 31
0 votes
0 answers
22 views

when do we say a metric space is quasi-invariant under a function?

A measure of a space that is equivalent to itself under "translations" of this space. More precisely: Let $(X,B)$ be a measurable space (that is, a set $X$ with a distinguished $ σ$ -algebra ...
Daun's user avatar
  • 1
-2 votes
0 answers
17 views

Hyperbolic metric space and Cayley graph of a group [closed]

The following definition is given in the book "Group Theory from a Geometrical Viewpoint" Proposition 2.1. The following are equivalent for a geodesic metric space X. (1) Triangles are slim....
mrinal nath's user avatar
7 votes
1 answer
203 views

Problem about fixed points in a complete metric space

Let $(X,d)$ be a non-empty complete metric space and let $ f:X \rightarrow X$ be a function such that for each positive integer $n$ we have (i) if $ d(x,y)<n+1$ then $d(f(x),f(y))<n$ (ii) if $d(...
Indianimperialist123's user avatar
0 votes
0 answers
53 views

Prove that the usual metric and other metric induce the same topology

I am working on A course on Borel sets, by S.M. Srivastava. There is this problem I am working on that states the following: Show that both the metrics $d_1$ and $d_2$ on $\mathbb{R^n}$ defined in 2.1....
pdaranda661's user avatar
0 votes
0 answers
16 views

Can a finite Wasserstein metric on Euclidean support be embedded in a Euclidean space?

Thanks for everyone's help with understanding finite metric embeddings in Euclidean space. I have a follow-up question. Say we have the Wasserstein distance between $n$ distributions in Euclidean ...
user9998990's user avatar
0 votes
1 answer
55 views

Conditions on a finite metric that guarantees embedding in Euclidean space? [duplicate]

If we have $n$ points in some metric space, do there exist coordinates for the $n$ points in an $n-1$ dimensional Euclidean space with exactly the same pairwise distances as in the original space? ...
user9998990's user avatar
0 votes
0 answers
25 views

Proving a the distance between Cauchy sequences converges [duplicate]

Assume we have two Cauchy sequences { $x_n$ } and {$y_n$} in the metric space $(X,d)$. Is it true that the sequence {$a_n$}$=d(x_n,y_n)$ is convergent in $\mathbb{R}$? Here is my try: $$$$ Since those ...
Krum Kutsarov's user avatar
1 vote
2 answers
71 views

Real Analysis Question about Limit points and ε-neighborhoods

The question says "Prove that a point $x$ is a limit point of a set $A$ iff every ε-neighborhood of $x$ intersects $A$ at some point other than $x$." I am having trouble proving the reverse ...
Sachin's user avatar
  • 81
0 votes
1 answer
46 views

What, if anything, is this metric on $\mathbb{R}^2$ named? And, what do the open balls in this metric space geometrically look like?

For each $\mathbf{x} := \left( \xi_1, \xi_2 \right) \in \mathbf{R}^2$, let $$ \lVert \mathbf{x} \rVert := \sqrt{ \xi_1^2 + \xi_2^2 }. $$ And, for any pair of points $\mathbf{x} := \left( \xi_1, \xi_2 \...
Saaqib Mahmood's user avatar
0 votes
0 answers
56 views

If $\forall n,\sum_ka_{n,k}^2<\infty$ and $\forall k,a_{n,k}\to b_k$, how to show that $\sum_kb_k^2<\infty$? [closed]

Let $\ell^2$ denote the metric space of all the square-summable sequences of real numbers. Let $p_n = \left( a_{n1}, a_{n2}, a_{n3}, \ldots \right)$ for $n = 1, 2, 3, \ldots$ be a sequence of points ...
Saaqib Mahmood's user avatar
0 votes
0 answers
34 views

There is at least one point of every non-empty open subset of the $\ell^2$ space whose first coordinate is nonzero [duplicate]

Here we take $$ \mathbb{N} := \{ 1, 2, 3, \ldots \}. $$ Let $\ell^2$ denote the set of all the real (or complex) sequences $\left( \xi_i \right)_{i \in \mathbb{N} }$ such that the series $\sum \left\...
Saaqib Mahmood's user avatar
0 votes
0 answers
69 views

The function $d \colon \mathbb{R}^2 \longrightarrow \mathbb{R}$ defined by $d\big((a,b)\big)=\lvert x-y\rvert$ is continuous [duplicate]

Let the function $d \colon \mathbb{R}^2 \longrightarrow \mathbb{R}$ be defined by $$ d\big( (x, y) \big) := \lvert x-y \rvert \qquad \mbox{ for all } (x, y) \in \mathbb{R}^2. $$ Let $\mathbb{R}$ and $...
Saaqib Mahmood's user avatar
0 votes
0 answers
42 views

The diameter of the union of two sets in a metric space cannot exceed the sum of the diameters of the two sets and the distance between them

Let $A$ and $B$ be any two (nonempty) sets in a metric space $(X, d)$. Then how to show that $$ d (A \cup B) \leq d(A) + d(B) + d(A, B)? \tag{0} $$ Here we have the following definitions: For any (...
Saaqib Mahmood's user avatar
0 votes
0 answers
53 views

Given a metric $d$, is continuity of $f$ absolutely essential for the composite function $f \circ d$ to be a metric (equivalent to $d$)? [closed]

Let $d$ be a metric on a nonempty set $X$, and let $f \colon [0, +\infty) \longrightarrow [0, +\infty)$ be a function such that (i) $f(0) = 0$, (ii) $f(r+s)\leq f(r) + f(s)$ for all $r, s \in [0, +\...
Saaqib Mahmood's user avatar
2 votes
2 answers
48 views

Is there a maximum number of disjoint balls of fixed radius I can fit into a compact metric space?

Let $(X,d)$ be a compact metric space and fix $r>0$. By sequential compactness, one may not find an infinite number of disjoint $r$-balls (sets $B_r(x):=\{y \in X: d(x,y)<r\}$) in $X$ as this ...
Qiyu Xie's user avatar
0 votes
0 answers
16 views

Connected Metric Spaces: Strategies

I am not really sure if my ideas in this topic are correct. Can anyone help me? Finding the connected components of a metric space $X$. Suppose there are two connected components $C_1, C_2$ of $X$. ...
Francisco J. Maciel Henning's user avatar
1 vote
1 answer
21 views

Convex combination of equidistant curves

Say we have three curves $\gamma, \delta, \varepsilon : \mathbb R \to \mathbb R^n$ such that the distances $\lVert \gamma(t) - \delta(t) \rVert$ and $\lVert \gamma(t) - \varepsilon(t) \rVert$ are ...
markusas's user avatar
  • 358
0 votes
0 answers
42 views

Can any open set in $\mathbb{R}^d$ be countably union of closed sets

I've already know that $\{B(x,r):x\in\mathbb{Q}^d,r\in \mathbb{Q}\} $ is an countable base of $\mathbb{R}^d$. Intuitively, I wonder that can an open set $\Omega\subset \mathbb{R}^d$ be countably union ...
Hải Nguyễn Hoàng's user avatar
3 votes
1 answer
406 views

Is a metric/distance not a measure?

A metric (https://en.wikipedia.org/wiki/Metric_space) or a distance (as in premetric) takes two elements of a set and maps the pair to a real number (or maybe even a complex number). It also might ...
Make42's user avatar
  • 1,131
2 votes
1 answer
75 views

Finishing the proof of the triangle inequality of Hausdorff metric

currently I am trying to show that a certain type of Hausdorff metric satisfies the following triangle equality and I am stuck. Setup: Take $(X,d)$ as metric space. Denote by $C(X)$ the set of closed ...
a.s. graduate student's user avatar
0 votes
1 answer
29 views

How to understand the Sobolev space defined by completion.

In page 16 of this book, the author state: For $1\leq p <\infty$, consider the normed space of all smooth functions $\phi \in \mathbb{R}^n$ such that $$ \|\phi\|_{1,p} = \|\phi\|_p + \|\nabla \phi\...
tianJ's user avatar
  • 41
-1 votes
1 answer
18 views

Composition of asymmetric contraction mappings [closed]

Let $(M,d)$ and $(N,q)$ be metric spaces. The operator $T:M\longrightarrow N$ is contractive in the sense that $q(T(m_1),T(m_2)) \leq c d(m_1, m_2)$ for some $c\in [0,1)$. Similarly, the operator $J:N\...
phil's user avatar
  • 162
1 vote
1 answer
53 views

Convex cocompact representation of finitely generated groups

Let $\mathbb{H}^n$ be the hyperboloid model for hyperbolic space and $\text{Isom}(\mathbb H^n) = PO(n,1)$. Let $\rho: \Gamma \rightarrow PO(n,1)$ be a representation of finitely generated group $\...
yyffds's user avatar
  • 59
-1 votes
2 answers
123 views

Is my understanding of the definition of a metric space correct?

The definition of metric space that I am using is as follows: Let $X$ be a nonempty set. A function $d:X\times X\to \Bbb R$ is said to be a metric or a distance function on $X$ if $d$ satisfies the ...
Thomas Finley's user avatar
0 votes
0 answers
20 views

Intersection of interiors of sets in a partition of $\mathbb{R}^d$

Let $\mathcal{Q}=\{Q_1,...,Q_n\}$ and $\mathcal{P}=\{P_1,...,P_m\}$ be partitions of $\mathbb{R}^d$ with $n<m$. Assume all $Q_k\in\mathcal{Q}$ and $P_i\in\mathcal{P}$ are close and convex sets. ...
Staltus's user avatar
  • 323
0 votes
1 answer
35 views

Which metrics (on vector spaces) can be induced?

Is there a way to classify which metrics defined on vector spaces can be induced by a norm? ie. there exists norm $n: X\to \mathbb{R}$ on the vector space $X$ such that the metric $d(x,y)=n(x-y)$. I ...
HIH's user avatar
  • 477
0 votes
1 answer
26 views

Axiom of Choice in characterizing openness in subspace

Below is the typical characterization of open sets in a subspace $Y$ of a metric space $X$. $E$ is $Y$-open iff there exists an $X$-open $S$ such that $E = S \cap Y$. The forwards direction usually ...
n1lp0tence's user avatar
1 vote
1 answer
22 views

Does this increasing sequence of subsets of a bounded connected metric space $(X,d)$ terminates at some point at $X$?

This might be a silly question; this is where I'm stuck as to whether a metric-bounded set in a connected metric space is uniformity-bounded in the sense of Bourbaki. Let $(X,d)$ be a bounded ...
Noiril's user avatar
  • 590
1 vote
0 answers
40 views

Is every bounded connected metric space totally bounded?

A metric space $(X,d)$ is said to be bounded if it is equal to a ball $B(x,r)$ of it. It is said to be totally bounded if for all $\epsilon>0$ there is a finite covering of $X$ by $\epsilon$-balls. ...
Noiril's user avatar
  • 590

15 30 50 per page
1
2 3 4 5
531